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Figure 1: Results for applying diferent color-based highlighting methods for highlighting points in a multi-class scatterplot. 
(a) (top) colorization with Tableau palette and default assignment; (bottom) highlighting efect achieved by assigning a grey 
color to all non-selected data points; (b) (top) result for a Palettailor-generated palette [21]; (bottom) highlighting achieved by 
increasing lightness of non-selected data points; (c) (top) colorization by Tableau palette and optimal assignment; (bottom) 
highlighting by applying Tableau Highlighter function; (d) (top) colorization by our method using a salient color palette; 
(bottom) highlighting result by combining salient and faint color mapping schemes. Problematic areas are indicated by arrows. 
Our method allows highlighting a subset of data points while maintaining the discriminability of all non-selected points as 
well as the color consistency of all color pairs. 
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small contrasts to the background. Both schemes maintain good 
perceptual separability among all classes and ensure that when 
colors from the two palettes are assigned to the same class, they 
have a high color consistency in color names. We then interactively 
combine these two schemes to create a dynamic color mapping 
for highlighting diferent points of interest. We demonstrate the 
efectiveness through crowd-sourced experiments and case studies. 

CCS CONCEPTS 
• Human-centered computing → Information visualization. 
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1 INTRODUCTION 
Multi-class scatterplots are among the most commonly used repre-
sentations for visualizing labeled quantitative data. They represent 
each data item with a color-coded point (or some other marks) 
positioned within two orthogonal dimensions, with color encod-
ing class label (i.e., category). If used with judiciously designed 
color palettes, multi-class scatterplots can efectively display the 
distribution of classes and the relationships among them. A few 
automated colorization methods [21, 42] have been proposed for 
maximizing class discriminability in scatterplots while maintaining 
their aesthetic appeal. Typically, all classes in a visualization are 
given equal emphasis (see the frst row in Fig. 1). This type of color 
assignment is sufcient for a static visualization. 

For interactive visualizations, however, it is desirable to empha-
size certain subsets of the data on-demand, for example, to allow 
the user to select or brush points of interest. The canonical strategy 
to support this interaction is to dim colors for the non-selected 
data by assigning a neutral grey. Although efective at inducing a 
highlight, this approach results in a loss of context (e.g. see Fig. 1 
(a)-bottom). While modulating lightness or opacity for the non-
selected data items can alleviate this issue [32], it can lead to poor 
class separability (e.g. see the small diference between the green 
and light-green classes in the bottom of Fig. 1 (b)). In short, existing 
color-based highlighting strategies cause a temporary loss of color 
coding [24], which disrupts exploration or, at minimum, the user’s 
mental map. Even state-of-the-art commercial solutions, such as 
Tableau Highlighter [36], struggle at producing good color high-
lighting while preserving context (see Fig. 1 (c)-bottom). Designing 
color palettes that support both, focus and context, is therefore cru-
cial for interactive visualization. Yet, this important design goal 
is unsupported by existing colorization approaches (e.g., Palettai-
lor [21] and Colorgorical [9]), as those approaches do not allow for 
dynamically varying the visual emphasis of selected data points. 

We present an interactive colorization technique for the context-
preserving highlighting of scatterplots (and for other multi-class 

labeled visualizations). The core of this technique is the ability to 
interactively emphasize data points of interest while also maintain-
ing a good perceptual separability for all classes, and furthermore 
ensuring color consistency under varying degrees of emphasis. Our 
technique allows the user to highlight elements in a visualization 
while still being able to see the local neighborhood and global 
context of those elements. This allows for creating compelling vi-
sualizations, such as multi-view interfaces that support efective 
brushing-and-linking without loss of context (see supplementary 
video). 

The proposed technique works by generating two contrastive 
color mapping schemes that maximize and minimize the contrast 
over the background, while both optimize the discriminability for 
a given scatterplot confguration. We create the needed empha-
sis by interactively combining both palettes. To achieve efective 
highlighting, we model the contrast to the background as well 
as the class-neighborhood contrast. Additionally, our technique 
maintains color consistency for hue, saturation, and color names 
between highlighted and de-emphasized colors for each class, thus 
ensuring minimal disruption to the user’s mental model. Fig. 1 (d) 
shows two pre-generated palettes of our method. The bottom of 
(d) shows the results of interactive highlighting. For the purpose 
of letting the selected data points of interest stand out, our results 
have a similar efect to Figs. 1 (a, b, c). However, in contrast to other 
methods, our method ensures good class separability and color 
names among selected and non-selected data points. 

We evaluated our approach in two crowd-sourced studies1. First, 
we compared our colorization results with state-of-the-art palettes 
(e.g., Tableau [37] and Palettailor [21]). The results indicate that 
our method achieves a comparable highlighting efect while better 
maintaining class separability than the benchmark methods. We 
also created a web-based implementation of our technique as a 
color-design tool2 and demonstrate its efectiveness in a case study. 
To summarize, the main contributions of this paper are as follows: 

• We propose an interactive context-preserving approach for 
generating stable color palettes for multi-class visualizations. 
Our approach supports an interactive emphasis on data parts 
while maintaining overall class discriminability and relative 
color consistency. 

• We present a simulated annealing-based optimization for 
generating highlightable palettes, while ensuring sufcient 
contrast with the background and neighboring classes, among 
other perceptual constraints. 

• We empirically validate our techniques in two crowd-sourced 
experiments and present extensions of our method to a few 
interactions and other multi-class visualizations such as line 
and bar charts, within an open-source implementation3. 

2 RELATED WORK 
We divide previous works into methods related to visual highlight-
ing and to color design for visualization. 
1Experimental data and analysis code are included with the submission as supplemental 
materials and are available at https://osf.io/679pb/.
2https://palettailor.github.io/highlighting/ 
3https://palettailor.github.io/highlighting/demo/ 
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2.1 Highlighting in Interactive Visualization 
In interactive visualization applications, it is a common task to high-
light a subset of data points for directing the user attention or apply 
subsequent operations to [18, 32, 38]. Emphasis efects are created 
by manipulating visual variables (e.g. position, size, transparency 
and color lightness). Naidu [25] presents a crowd-sourced study 
to measure the highlighting efect of color-coded scatterplots and 
provides recommendations for efective color highlighting. 

Previous studies have systematically evaluated emphasis efects 
in a wider range of scenarios [10, 23, 41]. Hall et al. [11] provide a 
systematic review of such efects and divide them into two classes: 
intrinsic and extrinsic efects. The former is created by the initial 
visual mapping, while the latter is the result of manipulating the 
visual variables of an existing visualization. Although the extrinsic 
emphasis is efective in many cases, it may confict with the visual 
encoding of the given visualization. For example, changing trans-
parency or color lightness in a multi-class scatterplot may result 
in new colors (see Fig. 1 (b)) that might lead to misunderstanding 
color-associated semantics or to similar colors (see Fig. 1 (c)) that 
do not allow visual discrimination anymore. To address this issue, 
our approach generates stable color mapping schemes for interac-
tively highlighting multi-class scatterplots that attempt to balance 
between two goals: emphasizing points of interest and maintaining 
class discrimination and color consistency. 

2.2 Color Design in Visualization 
For a complete review of color design techniques for visualization, 
we refer readers to surveys such as [40, 46]. We limit our discussion 
to techniques related to color design for categorical data visualiza-
tion and specifcally to the optimization of color mappings, color 
palette generation, color palettes for highlighting as well as color 
consistency. 

Color Map Optimization. Mapping each class to a proper color 
selected from a given palette is particularly helpful for categor-
ical data visualization since no given order can be used here. A 
few factors have been identifed for guiding searches within such 
mappings. For example, Lin et al. [19] propose to optimize the 
compatibility between class semantics and assigned colors. Setlur 
and Stone [33] produce better results by using co-occurrence mea-
sures of color name frequencies. Reda et al. argue generally for 
increasing the nameability of colors in colormaps [30, 31]. Kim et 
al. [15] incorporate color aesthetics and contrast into the optimiza-
tion of color assignment for image segments. Szafr [39] fnd that 
mark size heavily afects color discriminability. Wang et al. [42] 
propose to maximize class discriminability based on color-based 
class separability, which takes into account spatial relationships 
between classes and in addition the contrast with the background 
color. Once the assignment is done, the color of each class can be 
further optimized for better serving additional purposes, such as 
reducing the power consumption of displays [4], improving the 
accessibility of visualizations for visually impaired users [22], or 
better class discrimination [17]. Almost all these methods aim to 
generate efective static visualizations, whereas our goal is to gen-
erate interactive visualizations with varying subsets of interest and 
maximizing class discriminability as well as the similarity between 
the perceived colors of each class. 

Color Palette Generation. To create an appropriate categorical 
color palette, the commonly used approach is to select one from 
a library of carefully designed palettes provided by online tools 
such as ColorBrewer [12]. Fang et al. [6] suggest maximizing the 
perceptual distances among a set of colors while meeting various 
user-defned constraints. Likewise, Nardini et al. [26] provide an 
automatic optimization algorithm for improving continuous col-
ormaps in Euclidean color space and integrate them into a test 
suite [27]. Colorgorical [9] further allows users to customize color 
palettes by generating them based on user-specifed discriminabil-
ity levels and preferences. Recently, Palettailor [21] takes a further 
step by automatically generating categorical palettes for diferent 
types of charts, such as scatterplots or line and bar charts. Rather 
than generating one palette at a time, our work produces a pair of 
contrastive palettes with diferent contrast over the background 
while maintaining color consistency between corresponding color 
pairs. This drives the dynamic generation of palettes to interactively 
highlight points of interest in multi-class scatterplots. 

Color Design for Highlighting. To let important classes stand 
out, the commonly used practice is to assign them bright colors 
while using subdued colors for less-important classes. This can be 
achieved by using accentuated color palettes, which consist of a 
set of subdued colors and a set of bright (stronger, darker, or more 
saturated) colors. However, only few such palettes are available. 
For example, ColorBrewer [12] provides only a very small set of 
such palettes. Therefore, Wilke [45] suggests creating palettes by 
lightening some colors of an existing palette while darkening others. 
This method might be able to create desired palettes but it is often 
hard to maintain the discriminability between all classes in the 
given data. In contrast, our method can automatically create such 
palettes and assigns them to the input data, while maintaining the 
stability of palettes for varying the data points of interest. 

Color Consistency. Multi-view visualizations are commonly used 
for multivariate analysis. Although a few design guidelines [43] 
have been proposed for constructing multi-view visualizations, few 
of them are related to color design. Qu et al. [29] recommend a set of 
color consistency constraints across views. Among them is a high-
level constraint that the same data feld should always be encoded 
in the same way. In our work, however, the highlighted data subset 
varies during the exploration. To ensure a relative consistency of 
the perceived color, we require the highlighted and de-highlighted 
colors of the same class to have the same hue and similar color 
names. 

3 BACKGROUND 
Given a multi-class scatterplot with � classes and � data items 
X = {x1, · · · , x� }, each x� has a label � (x� ) and the �-th class has �� 
data points. The goal of Palettailor [21] is to fnd a color mapping 
� : � ↦→ � that maximizes the discriminability of the given multi-
class scatterplot while ensuring that all colors can be referenced by 
names. Since each class is assigned a unique color, a palette � with 
� colors is formed. Palettailor fnds � by maximizing the following 
objective: 

arg max � (�) = �0��� + �1�� � + �2��� , (1) 
� 
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Figure 2: Illustrating the nearest neighbors of each data point 
and the infuence of mark size in the perceived color difer-
ence for an input scatterplot (a) with two regions selected to 
zoom-in in (b,c). (b) The nearest neighbors for the selected 
point are defned by the �-shape graph; (c) a subset of data 
points selected from (a) shown in three diferent sizes. 

consisting of a point distinctness term ��� , a name diference term 
�� � , and a color discrimination term ��� . Each weight �� is a value 
range from 0 to 1 and each class �� is assigned a unique color �� . 
Besides these terms, a hard constraint is imposed to require the color 
diference between any two colors to be larger than a just noticeable 
diference threshold. ��� is defned as the minimal CIELAB color 
distance [34] among every color pairs in � ; we describe the other 
terms in the following. 

Point Distinctness. Given X, an �-shape graph [21] is frst con-
structed by connecting each point to its neighbors in the Delaunay 
graph and intersected within so-called �-balls (see an example 
in Fig. 2(b)). Then for each data point x� , its point distinctness is 
defned as: ∑ 1 Δ� (� (� (x� )), � (� (x� ))) 

� (x� ) = , |Ω� | � (x� , x� ) x� ∈Ω� 

where Ω� is set of nearest neighbors of x� , � (� (x� )) is the mapped 
color of x� , � is the Euclidean distance and Δ� is the CIELAB color 
distance [34]. By summing up the point distinctness of all data 
points, ��� is defned as: 

� 1 � ∑ ∑ 
��� = � (x� )� (� (x� ), �), (2) 

�� � �=1 

where � (� (x� ), �) is one, if the class label � (x� ) has a value of � , 
otherwise zero. If a class overlaps with diferent classes, the point 
distinctness value will be high, but small for a well-separated class. 

Name Diference. Since color names are frequently used for com-
municating colors in visualization, a good palette should consist of 
colors associated with largely diferent names. Given a normalized 
color-term count matrix � , �� � is defned as: ∑ 2 

�� � = � (��� ,�� � ). (3) 
�(� − 1) 

�≠� ∈� 

where ��� is the probability distribution of color names for a given 
color �� and � (��� ,�� � ) can be any distance measure for probability 
distributions; here we use the cosine distance [13]. 

To fnd the optimal � in Eq. 1, a customized simulated anneal-
ing [1] algorithm is used, which starts with a random initial solution 
and a high temperature and progressively updates the solution and 
decreases the temperature to zero until reaching the convergence. 

This algorithm yields reasonable results in less than 10s for 20 
classes, facilitating an interactive generation of palettes. However, 
a key limitation of Palettailor (and other automated colorization 
techniques) is that they do not support interactive highlighting, 
limiting their use in dynamic visualizations. We address this limi-
tation by providing explicit support for the interactive emphasis 
on demand. Additionally, we also extend earlier colorization meth-
ods by modeling background contrast. This allows the highlighted 
data to pop out relative to the background, but also to other marks 
of the visualization. We also developed new constraints for the 
optimization to ensure discriminability and color consistency for 
emphasized and non-highlighted classes. 

4 CONTEXT-PRESERVING HIGHLIGHTING 
For a given multi-class scatterplot with � classes and � data items 
X and a background color �� , our goal is to fnd a set of colors 
that creates the desired interactive emphasis efect for multi-class 
scatterplots. In line with the design requirements for pop-out efects 
and categorical data visualization [8, 14, 21], our problem can be 
formulated based on the following three design requirements: 

(i) DR1: highlighting the seletced data points as much as possi-
ble to deliberately attract user attention; 

(ii) DR2: maximizing the visual discrimination between classes 
for efciently exploring the data, for the selected and non-
selected classes; and 

(iii) DR3: maintaining color consistency for data points when 
they are dynamically highlighted or de-emphasized. 

The resulting color mapping schemes satisfy DR1 by letting selec-
tions of interest pop out from the context while yielding better 
visual discrimination of classes for meeting DR2. Because the color 
for a class can vary depending on whether it is highlighted or 
not, we satisfy DR3 by requiring the two states (highlighted vs. 
de-emphasized) to have the same hue and saturation values while 
also ensuring similar color names. In doing so, we ensure a consis-
tent perception of color appearance as data points of interest are 
interactively highlighted or de-emphasized. 

4.1 Combination-based Highlighting 
Most existing colorization techniques [9, 21] attempt to meet DR2. 
A key challenge for our technique, however, is to ensure that colors 
for classes of interest are sufciently distinct to create the wanted 
pre-attentive ‘pop out’ efect (DR1). To meet this constraint, a widely 
used manual approach [24] is to modulate the color opacity or lu-
minance contrast with the background for the non-selected data 
points. However, doing so will likely violate DR2 and DR3, because 
changing one or multiple colors might not preserve the ability of 
the viewer to visually discriminate all classes (see the bottom row 
of Figs. 1 (b,c)). On the other hand, simply extending existing col-
orization methods to enforce larger color diferences for all classes 
might help meet DR1 and DR2, but the generated color mappings 
might difer noticeably when data points are dynamically empha-
sized (e.g., in response to user selection), causing user confusion 
(violating DR3). 

To meet the three design requirements, we propose a combination-
based highlighting method consisting of two steps. We frst pre-
generate the two color mapping schemes �� : � ↦→ � and � � : � ↦→ �̃ 
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for a given scatterplot, consisting of one palette �� = {�1, · · · , �� }
with salient colors over the background and a corresponding palette 
� � = {�̃1, · · · , �̃� } with faint colors. For each data point x� , the color 
will be �� (� (x� )) if selected for highlighting or � � (� (x� )) otherwise. 
Since �� and � � both are required to meet DR2 and DR3, the overall 
color mapping will emphasize the data of interest (given the high 
saliency of �� ) while also preserving the visual discriminability of 
all classes and ensuring good color consistency. 

4.2 Modeling Contrastive Color Mappings 
We formulate the search for a pair of color mapping �� and � � and 
their resulting palettes �� and � � as an optimization problem with 
the objective function � (�� , �� , � � , � � ): � � 

arg max � (�� , �� , � � , � � ) =�0 ��� (X, �� ) + ��� (X, � � ) (4) 
�� ,�� ,� � ,� � � � 

+�1 ��� (X, �� ) − ��� (X, � � ) (5) � � 
+�2 �� � (�� ) + �� � (� � ) (6) 

+�3 ��� (�� , � � ) (7) 

where the frst two terms are based on the score of each color map-
ping scheme and the last two measure the score and compatibility 
of two resulting color palettes. 

Each weight �� is a value in the range [0, 1]; we set all of them 
to 1 by default. The terms ��� and �� � are designed to meet 
DR2 while ensuring that colors are nameable. The second term ��� 
satisfes DR1 by maximizing and minimizing the luminance contrast 
of the color mappings �� and � � over the background, respectively. 
The last term ��� meets DR3 by requiring the corresponding colors 
in the two palettes to have similar perceived colors. To ensure all 
colors found by color mapping � have enough discriminability, we 
apply a hard constraint in the form of the JND threshold. Since the 
perceived color diference varies across mark sizes (see Fig. 2(c)), 
we defne the JND threshold based on the size-dependent model 
proposed by Szafr[39]. ��� and �� � are defned in Eq. 2 and Eq. 3. 
In the following, we will introduce the new terms for background 
contrast ��� and color consistency ��� and then describe how we 
solve the overall optimization problem. 

Background Contrast. We defne the contrast of each data point 
x� to the background based on two factors: position-based class 
separability among its neighboring points and luminance diference 
to the background. The former measures by the diference between 
two separation degrees [2]: 

� (x� ) = � (x� ) − �(x� ) , 
where � (x� ) is the between-class separation degree and �(x� ) is 
the within-class separation degree. The measures are defned as 
weighted sums of the non-separability of x� from its neighborhood 
stemming from the same class and from other classes: ∑ 1 � (� (x� ), � (x� )) 

�(x� ) = , |Ω� | � (x� , x� ) x� ∈Ω� ∑ 1 1 − � (� (x� ), � (x� )) 
� (x� ) = . |Ω� | � (x� , x� ) x� ∈Ω� 
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When most neighbor points of x� have the same label as x� , 
� (x� ) is negative. However, a negative � (x� ) would reduce the 
contrast of the palette �� over the background, which conficts with 
the objective of Eq. 7. To address this issue, we use an exponential 
function to let � (x� ) always be positive and then normalize it to 
the range [0,1]. The contrast to the background of the �th class is: ∑ 1 � 

�� (X, �) = � (x� )Δ�(� (� (x� )), c� )� (� (x� ), �). (8) 
�� � =1 

where � (� (x� ) is the color of point x� , Δ� is the absolute luminance 
diference between point and background color in CIELAB space. 
The background contrast is defned as the sum of the background 
contrasts of each class: 

�∑ 
��� (X, �) = �� (X, �) . (9) 

�=1 

Figure 3: Results generated for two diferent backgrounds: 
grey (a,b) and blue (c,d). (a,c) the salient palettes and the col-
orized scatterplots; (b,d) the faint palettes and the colorized 
scatterplots. 

This term depends on the non-separability and color luminance 
diference to the background, which means a class overlapping 
with other classes should have a larger �� than a separated class. 
As shown in the top of Fig. 1(d) (green and dark blue classes), this 
yields better class separability. Since we take the contrast with the 
input background color into account, this model is able to adapt to 
diferent backgrounds, see Fig. 3 for illustration. 

Color Consistency. To ensure colors are perceived similarly for 
highlighted and de-emphasized states, hue and saturation should 
be stable when data emphasis is dynamically changed. We also 
require colors to have similar color names, which helps the user in 
maintaining a mental map as data is selected and deselected. Hence, 
the following term measures name similarity between color pairs 
across the two contrastive palettes: ∑ 1 
��� (�� , � � ) = − � � (�� (�), � � (�)), (10) 

� 
� ∈� 

subject to � (�� (�)) = � (� � (�)) and � (�� (�)) = � (� � (�)), (11) 
for � = 1, . . . ,� 

We impose the hard constraint that �� (�) and � � (�) assigned 
to the �th class should have the same hue � (�� (�)) and saturation 
� (�� (�)) values. In other words, the diference between colors in 
�� (�) and � � (�) is only in the lightness channel and thus the objec-
tive in Eq. 7 can be simplifed to a four-dimensional optimization 
problem. Fig. 4 compares the results generated by only imposing 
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Figure 4: Comparing palettes generated by without (a) and 
with (b) name similarity terms. The results with solid borders 
are created by the salient palettes and the ones with the 
dashed border are created by the faint palettes. 

the hard constraint in Eq. 11 and the complete color consistency 
term. Incorporating name similarity not only yields contrastive 
palettes with highly similar color names but also enlarges name 
diferences in each palette (see the four pink colors of the right 
palette in Fig. 4(a)). 

Foreground Contrast Constraint. To ensure a visual pop-out 
efect for the highlighted data, we require the corresponding points 
to have large color contrast to the background, so that highlighted 
data is perceived as a clear ‘foreground’ layer. Since highlighted 
points are colorized by the �� palette, we meet this requirement 
by imposing a hard constraint that each color in �� should have a 
larger luminance contrast to the background than all colors in � � : 

∀�, ∀�, Δ�(�� (�), c� ) > Δ�(� � (�), c� ). (12) 

For short, we refer to this constraint as the foreground contrast 
constraint. 

Homogeneous Lightness Constraint. Previous studies [44] show 
that detecting targets over uniform backgrounds is more efcient 
than over complex ones. Thus, assigning uniform lightness to all 
colors in � � allows us to better meet DR1. However, this might 
reduce visual discrimination among non-highlighted classes, which 
would violate DR2. Fig. 6(b) shows an example with uniform light-
ness; note how the assigned pink and red colors in Fig. 6(a) become 
very similar in Fig. 6(b). To fnd a trade-of between these two re-
quirements, we impose a constraint that all colors in � � should have 
a small standard deviation in lightness so as to yield a relatively 
homogeneous background: 

0 ≤ SD({�(� � (1)), . . . , �(� � (�))}) ≤ � (13) 

where �(� � (�)) is the lightness of color � � (�) and � is a small 
value specifed by the user. To meet this constraint, we frst fnd 
a uniform lightness level for all colors in each � and subsequently 
perturb the lightness of each color � � (�) within a range of [−�, �]. 
Figs. 6(c, d) show how an appropriate � can help to meet DR1 and 
DR2. Note how all colors in Fig. 1(d) are discriminable (see §4.4 
for a formal analysis of this parameter). Also, observe how the 
non-highlighted points are assigned similarly faint colors though 
not identical lightness levels. 
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Algorithm 1 Simulated Annealing for Palette Generation 

1: randomly initialize �� and � 
2: set an initial temperature � and � � = �� 

3: set the lightness of all colors in � � to � 
4: Δ� = 0 
5: while � > 0 do 
6: �� = �� , � � = � � 

7: if ������(0, 1) < ��� (Δ�/� ) then 
8: randomly choose a new �̂  in the neighborhood of � 
9: set the lightness of all colors in � � to �̂  

10: end if 
11: if ������(0, 1) < 0.5 then 
12: randomly exchange two colors from �� 

13: exchange the corresponding colors in � � 

14: else 
15: randomly disturb one color � from �� 

16: update � � with �� via Eq. 11 and Eq. 13 
17: while �� , � � not satisfying ��. 12 do 
18: disturb color � from �� 

19: update � � with �� via Eq. 11 and Eq. 13 
20: end while 
21: end if 

′ ′ 22: while min Δ� (�� , � � ) < � or min Δ� (�� , � � ) < � do 
�� ,� � ∈�� 

� ′ ,� ′ ∈� � 
� � 

23: randomly disturb �� or � � to get a new �� 

24: update � � with �� via Eq. 11 and Eq. 13 
25: end while 
26: Δ� = � (�� , � � ) − � (�� , � � ) 
27: if Δ� > 0 then 
28: �� = �� , � � = � � , � = �̂  

29: else 
30: if ������(0, 1) < exp(Δ�/� ) then 
31: �� = �� , � � = � � , � = �̂  

32: end if 
33: end if 
34: � = �� 
35: end while 

4.3 Optimization for Contrastive Palettes 
We implement the above constraints in a simulated annealing al-
gorithm to generate a pair of color mapping schemes �� and � � 

(see pseudocode in Algorithm 1). Before presenting our algorithm, 
we map each class label to an index range of [1,�] and assume 
that the color �� in the palette � is assigned to the �th class. After 
initializing a high “temperature” and a palette �� with � random 
colors, this method iteratively updates the palettes with three major 
steps in each iteration: i) fnding a neighboring solution of �� , ii) 
using �� to update � � and fnding a neighboring solution of � � ; 
and iii) refning the two temporary palettes �� and � � to meet the 
JND constraint. In the following, we describe the last two major 
steps. 

Finding the neighboring � � near �� (line 6-21). Based on the 
current solution �� and � � , we frst update � � by fnding a new 
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Figure 5: Convergence of our method. (a) curve on � versus 
the number of iterations(blue) and curve of � versus the num-
ber of iterations (red); (b) colorized results and palettes with 
random initialization; (c,d) results after 1175 and 1800 itera-
tions. 

lightness value for all colors (line 6-10). To rapidly produce a ho-
mogeneous background, we set a large probability for accepting 
a uniform lightness for all colors initially and decrease it with in-
creasing number of iterations (see the probability distribution in 
the supplemental material). Then, we try to fnd a neighbor solution 
�� of �� by randomly exchanging two colors (line 12) or choosing 
a new color around the neighborhood of one selected color (line 
15). After generating a new solution for �� , we update � � in the 
terms of Eq. 11 and Eq. 13 (line 16). Namely, we maintain the hue 
and saturation of each color chosen from �� and perturb the latest 
uniform lightness value (see lines 28 and 31) by a random value in 
[� − �, � + �] to increase the discriminability. Finally, we disturb the 
solution until satisfying Eq. 12 (see line 17-20). Fig. 5 (a) shows the 
evolution curve of � , which has large variations at the beginning 
and then gradually converges to a stable value. Figs. 5(b, c, d) show 
scatterplots visualized with palettes yielded at the initialization, 
the 1175th, and the 1800th iteration. � quickly reaches a reason-
able value but the colors keep changing to further improve class 
discrimination (see Figs. 5(c, d)). 

Refne Palettes via JND constraints (line 22-25). To ensure 
that all colors in �� and � � can be discriminated, we compute 
the minimal distance between each pair of colors in both palettes 
and see if it satisfes the hard JND constraint. If their diference 
is smaller than a mark size-dependent JND threshold � [39], we 
randomly perturb the corresponding color pair in �� and use �� 

to update � � until all color pairs meet the constraint. Since � is a 
JND threshold modulated by the given mark size, we recalculated 
� when the size is changed. JND modulation ensures that smaller 
marks are allocated larger color diference relative to other classes 
for discriminability. 

Due to the stochastic nature of this algorithm, random initializa-
tion of palettes and lightness does not infuence the fnal solution 
in our experiments. The time complexity of each iteration is � (�2) 
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and the time complexity for the whole algorithm is � (��2) for a to-
tal number of iterations � . Our method allows us to yield reasonable 
palettes for scatterplots with 20 classes in less than 10s. 

4.4 Parameter Analysis for Background 
Complexity 

A key parameter that afects the likelihood that the emphasized 
data will pop out is the complexity of the background. Namely 
� , which controls the standard deviation for the lightness of the 
non-highlighted data (i.e., for the colors of the faint palette � � ). A 
small � will reduce the discriminability of all background classes 
(see the two red colors in Fig. 6(b)), while a large value will de-
grade user performance in identifying the highlighted data (see the 
yellow and pink classes in Fig. 6(d)). Experimenting with diferent 
levels, we found a default value of � = .05 to be a good trade-of be-
tween emphasizing classes of interest while preserving background 
discriminability (see Fig. 6(c)). 

Figure 6: Efect of the lightness standard deviation � on the 
faint palette: (a) salient palette �� ; (b,c,d) faint palettes � � gen-
erated by diferent � (left) and resulting scatterplots (right). 

5 EVALUATION 
Considering that oftentimes there are multiple tasks involved in 
the analysis of a scatterplot, we evaluated the efectiveness of our 
method from two diferent perspectives: static visualization and in-
teractive exploration. For static visualizations, all classes have equal 
importance and the main task is to discriminate diferent classes 
(see Table 1). Here, we use a counting task, prompting participants to 
count the number of unique classes in a visualization, thus measur-
ing how discriminable the classes are. For interactive exploration, 
classes of interest should be highlighted and other classes need 
to be de-emphasized. In this case, the most important part is to 
fnd the classes of interest. However, during interactive exploration, 
diferent classes would be highlighted. When a class gets out of 
focus and its color faints, the viewer still needs to recognize which 
class it is. Furthermore, people often need to distinguish the con-
text around a highlighted class to examine the data distribution. To 
achieve these evaluation goals, we created three tasks to examine 
the efciency of our method: (1) a highlighting task, (2) a matching 
task and (3) a selecting task. The last two are designed to evaluate the 
efectiveness of our technique in preserving color consistency and 
class discrimination of non-selected data points, referred as context-
preserving tasks. We conducted two controlled experiments across 
the four tasks by crowdsourcing 150 participants through Amazon 
Mechanical Turk (AMT). 
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Table 1: Layout of the two crowdsourced experiments: Tableau (D) indicates Tableau with default assignment, Tableau (O) 
indicates Tableau with optimal assignment, Paletailor (L) indicates Paletailor with lightness adjustment, Paletailor (A) indicates 
Paletailor with alpha blending, Tableau (D+H) indicates Tableau Highlighter with default assignment, Tableau (O+H) indicates 
Tableau Highlighter with optimal assignment, Our Method (S) indicates Our Method (static), Our Method (I) indicates Our Method 
(interactive). 

Experiment 1: Static Visualization Experiment 2: Interactive Exploration 
Methods Tasks Methods Tasks 

Palettailor 

Tableau (D) 
Tableau (O) 

Our Method (S) 

Counting Task 

Palettailor (L) 
Palettailor (A) 
Tableau (D+H) 
Tableau (O+H) 
Our Method (I) 

Highlighting Task Matching Task Selecting Task 

Benchmark Methods. We compared our method with two existing 
colorization methods as benchmarks: 1) Palettailor [21], a state-of-
the-art automated colorization tool designed for generating discrim-
inable and optimized categorical palettes; and 2) Tableau [37], an in-
teractive data visualization software with designer-crafted palettes. 
Tableau also has a purposefully designed tool called Highlighter 
for emphasizing a specifc class while maintaining the context of 
the other classes. We therefore include Tableau Highlighter among 
our benchmark methods. However, Palettailor only supports static 
data visualization. Hence, we compared our method with two com-
monly used extrinsic emphasis techniques: adjusting the lightness 
contrast or the opacity value of a given palette to emphasize desired 
classes [18]. 

Tasks & Measures. 
• Counting task (global discrimination). Following previous 
methodologies [21, 42], we asked participants to identify how 
many classes (i.e., diferent colors) they can see in a given 
scatterplot. As shown in Fig.7(a), they entered their answer 
by selecting from multiple options that were displayed below 
the scatterplot. We recorded the answer and response time for 
each trial, and computed the relative error as the proportion 
of the total number of classes. For example, a participant 
answering with 8 classes when there were actually 10 would 
be reported as an error of 0.2. 

• Selecting task (local discrimination). As shown in Fig.7(b), 
we put a circle around a randomly selected point of the 
highlighted class in a scatterplot and then asked participants 
to select all colors from the palette that appear within the 
circle. The radius of the circle was 10× the radius of each 
point. Participants entered their answers by selecting colors 
from a palette displayed below the scatterplot. We recorded 
user selection and response time for each trial, and computed 
the relative error as the proportion of the actual number of 
classes. 

• Highlighting task. Following the methodology of Mairena 
et al. [23], we asked participants to examine the scatterplot 
frst and then point out which class they believe is being 
emphasized, as shown in Fig. 7(c). We allow participants to 
click any representative point in the scatterplot as a way of 
selecting the class. For each trial, we measured the binary 

Figure 7: Illustration of tasks: (a) counting task; (b) selecting 
task; (c) highlighting task and (d) matching task. The scatter-
plot is from one of the datasets used in the experiment. Here, 
we apply a Tableau-provided color palette with randomized 
rotation to avoid learning efects. 

error (i.e., whether the class chosen by a participant is the 
intentionally highlighted one). We also tracked the response 
time. 

• Matching task (color consistency). As shown in Fig.7(d), we 
asked participants to select the cluster from a scatterplot 
whose color most closely matches the indicated color. Partic-
ipants could click any representative point in the scatterplot 
as a way of selecting the class. For each trial, we measured 
the error (0/1) (i.e., whether the class chosen by a participant 
was the correct one) and the response time. 
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Hypotheses. 
We expect our methods to outperform the benchmarks in pre-

serving context and color consistency. That is, we expect to attain 
the benefts of visual focus without sacrifcing performance on tasks 
requiring context. Specifcally, we pose the following hypotheses: 
H1. Our palette generation method for static visualization is 

comparable to the benchmark conditions in the counting 
task. 

H2. Our palette generation method for interactive exploration is 
comparable to the best benchmark conditions in the high-
lighting task. 

H3. Our palette generation method for interactive exploration 
outperforms the benchmark conditions in the two context-
preserving tasks (selecting task and matching task). 

Dataset Generation. The scatterplot datasets used in our studies 
were generated as follows. First, to avoid learning efects, we chose 
three diferent class numbers: 6, 8 and 10 classes. Each class was 
generated using Gaussian random sampling and random placement 
in a 600 × 600 area. Following the procedure described in Lu et 
al. [21], all scatterplots belonged to one of four possible confgura-
tions of class size and density: small & dense (� = 50, � = 20), small 
& sparse (� = 20, � = 50), large & dense (� = 100, � = 50), and large 
& sparse (� = 50, � = 100). In total, we generated 3 (class number) 
× 4 = 12 scatterplots. 
Engagement Checks. In addition to the analyzed trials, we also 
generated multiple engagement checks to verify that participants 
were paying attention to the task. Engagement checks comprised 
a scatterplot with only 4 fully-separated classes, each with a very 
distinctive color. For the highlighting task, we randomly chose one 
class to be emphasized, and assigned the other classes a lightness 
value of 0.9 to let them fade into the white background. For the other 
tasks, we assigned highly distinctive colors to allow for an easy 
class discrimination. We excluded participants from the analysis 
who failed more than one engagement check. 
Procedure. Each participant went through the following steps: (i) 
viewing an instruction for the task and completing three training 
trials; (ii) completing each analyzed trial as accurately as possible; 
(iii) providing demographic information. The three training trials 
were identical to the subsequent real test. We implemented difer-
ent response mechanisms for the four tasks. For the highlighting 
and matching tasks, participants clicked a data point belonging to 
the class they thought was the correct one. For the counting and 
selecting tasks, participants entered their class count or selected the 
corresponding colors by choosing from multiple options displayed 
below the visualization. 
Analysis. Following previous research [21], we analyzed the re-
sults using 95% confdence intervals, and conducted Mann-Whitney 
tests to compare the diferences between the conditions. In addition, 
we computed the efect size using Cohen’s d (i.e., the diference in 
means of the conditions divided by the pooled standard deviation). 
We calculated an ANOVA-type statistics (ATS) without normality 
assumption (using the R-package GFD [7]) to examine the interac-
tion efect between variables. 

5.1 Experiment 1: Static Visualization 
We conducted this experiment to examine how well our method 
supports people to visually distinguish diferent classes in a static 
visualization through a counting task. 
Conditions. In this experiment, we included four conditions: 

(1) Palettailor: This method represents the state-of-the-art au-
tomated colorization algorithm for multi-class scatterplots 
with the best class discriminability, corresponding to Fig. 1(b)-
top. 

(2) Tableau with default assignment: This method represents the 
default visualization efect for designer-crafted categorical 
palettes. We assigned each color to each class in turn, to 
mimic how Tableau performs the color assignment, as shown 
in Fig. 1(a)-top. 

(3) Tableau with optimal assignment: This method represents the 
state-of-the-art for designer-crafted categorical palettes. We 
applied the optimal discrimination assignment approach [42] 
to the Tableau-10 palette, to mimic the best discriminable re-
sult from a manual selection of the user, as shown in Fig. 1(c)-
top. 

(4) Our method (static): Assigning colors using a salient palette 
generated by our automated colorization method described 
in Sec. 4.3 with default settings. This condition refects the 
fully-automated colorization option of our method for static 
visualization, as shown in Fig. 1(d)-top. 

Experimental Design. We used a within-subject design: each par-
ticipant completed all four conditions. To avoid ordering efects, we 
randomly shufed the display order of the given 48 stimuli (4 condi-
tions × 12 scatterplots). For each stimulus, we also randomly rotated 
the scatterplot. Furthermore, we added three engagement checks 
to ensure participants were paying attention to the experiment. 

5.1.1 Counting task. 
We asked participants to identify how many classes (i.e., distinct 
colors) they fnd in a given scatterplot, as shown in Fig.7(a). Par-
ticipants choose an answer from multiple options given below the 
scatterplot. We expected to see that our method will be comparable 
to other state-of-the-art conditions w.r.t. error and response time. 
We conducted this task through AMT with 30 participants. Accord-
ing to the completion time in the study (the details can be found in 
the supplementary materials), we paid each participant $1.75 for 
the task based on the US minimum hourly wage. No participant 
claimed color vision defciency on their informed consent. 
Results. Fig.8 shows the results of the visual discriminability exper-
iment. While Palettailor achieves the best performance, our method 
performs better than the two Tableau conditions. In particular, 
Tableau with default assignment exhibited the worst performance. 
That said, there is no signifcant diference between these four con-
ditions, implying a statistically similar performance. In terms of 
response time, we found that Tableau with optimal assignment and 
Tableau with default assignment take less time than our method and 
Palettailor. However, again these diferences were not statistically 
signifcant. The results overall indicate that our palette generation 
method is comparable to the benchmarks for the counting task (H1 
confrmed). 
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Figure 8: Confdence interval plots and statistical tables for 
the counting task. Error bars represent 95% confdence in-
tervals. Each table shows the statistical test results of our 
experimental condition (Our Method (S) with the three bench-
mark conditions (Paletailor, Tableau (D) and Tableau (O)), 
showing the mean with 95% confdence interval (� ∼ 95%CI), 
W-value and p-value from the Mann-Whitney test, as well as 
efect size (d ∼ 95%CI). 

We did not fnd a signifcant interaction between colorization 
methods and cluster number (� (3, 1432) = 0.1342; � > 0.1). The 
efectiveness of the diferent methods on visual discriminability 
seems insensitive to the number of clusters. 

5.2 Experiment 2: Interactive Exploration 
We designed three tasks to examine the efciency of our method 
for interactive exploration: a highlighting task for measuring the 
emphasis efectiveness, and two tasks for measuring the context-
preserving performance: a matching task and a selecting task. 
Conditions. We included fve conditions, the illustrations for dif-
ferent conditions can be found in the supplementary materials: 

(1) Palettailor with lightness adjustment: This condition repre-
sents a common highlighting strategy: applying lightness 
adjustments to a given colorized scatterplot that has good 
class discriminability to begin with. We maintain the original 
lightness level of the emphasized class while adjusting the 
lightness of all other classes. The adjusted lightness value 
depends on the background color. For example, if the back-
ground is white, the lightness should be high. 

(2) Palettailor with alpha blending: This condition represents 
another highlighting strategy: applying alpha blending to 
a given colorized scatterplot that has a good class discrim-
inability to begin with. We set the opacity of the class to be 
emphasized to 1.0 while adjusting the opacity of all other 
classes to 0.2, which is recommended by Bartram et al. [3]. 

(3) Tableau Highlighter with default assignment: For each color 
in the Tableau-10 palette, we obtain its corresponding faint 
color for the non-highlighted classes from the Tableau High-
lighter. We applied this strategy to the default assignment 
of the Tableau palette. 

(4) Tableau Highlighter with optimal assignment: Similar to the 
above, but with an optimal assignment of the Tableau palette. 

(5) Our Method (interactive): Combining colors from the two 
contrastive palettes (salient and faint colors). 

Experimental Design. Similar to the frst experiment, we used a 
within-subject design: each participant completed all 5 conditions 
across 12 scatterplots with a randomly chosen class to be highlighted 
(60 stimuli in total). To avoid ordering efects, we randomly shufed 
the display order of stimuli. For each stimulus, we additionally 
randomly rotated the scatterplot. We also included four engagement 
checks to ensure participants were paying attention. 

Figure 9: (a) Results of the pilot study for selecting a proper 
lightness value: larger error value implies lower performance 
for each task. (b, c, d) Example trials used in the study with 
diferent lightness values. A lightness value of 0.9 was se-
lected as a sweet spot for the experiments. 

5.2.1 Pilot for Selecting Lightness Value. 
One potential issue for using lightness to emphasize the desired 
class is that we cannot choose a value arbitrarily. We therefore 
conducted a pilot study across all three tasks, to determine an 
appropriate lightness level to assign to the non-highlighted classes. 
We used four 8-class scatterplots in our pilot, and utilized Palettailor 
with lightness adjustment. The lightness value varied incrementally 
within a range of [0.1, 0.9] and a step of 0.1. In total, we included 4 
(scatterplots) × 9 (lightness levels) = 36 trials, plus 3 engagement 
checks. The trials were presented in random order. We recruited 10 
participants for each task (30 participants in total) through AMT 
for a pilot. Participants who failed more than one engagement 
check were excluded, with new recruits taking their place, until 
we reached 10 participants. Each participant went through all 36 
stimuli. All participants were US residents with a task-approval 
rate larger than 97% and indicated normal color vision on their 
informed consent. 

In Fig. 9(a), we plot the average error rate for each lightness value 
of the three tasks: highlighting task, selecting task and matching task. 
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On a white background, error decreased for the highlighting task 
as the lightness value increased. This is due to the non-emphasized 
classes fading into the background, enabling the highlighted class to 
stand out, as shown in Figs.9(b, c, d). Conversely, the errors for the 
selecting and matching tasks improved with an increased lightness 
value. To reach the best performance among these tasks, we chose 
0.9 as a reasonable lightness value for our experiment. 

5.2.2 Highlighting task. 
To evaluate whether our approach enables viewers to intuitively 
identify the emphasized class from a scatterplot, we conducted 
this task through AMT with 30 participants being accepted. The 
user interface is shown in Fig.7(c). According to the completion 
time in the study (the details of the pilot study can be found in 
the supplementary materials), we paid each participant $1.00 for 
the task based on the US minimum hourly wage. No participant 
claimed color vision defciency on their informed consent. 

Figure 10: Confdence interval plots and statistical tables 
for the highlighting task. Error bars represent 95% conf-
dence intervals. Each table shows the statistical test results of 
our experimental condition with the benchmark conditions 
(Paletailor (L) indicates Paletailor with lightness adjust-
ment, Paletailor (A) indicates Paletailor with alpha blending, 
Tableau (D+H) indicates Tableau Highlighter with default as-
signment, Tableau (O+H) indicates Tableau Highlighter with 
optimal assignment, Our Method (I) indicates Our Method 
(interactive)). 

Results. Fig. 10 shows the results of the experiment for the high-
lighting task. Our Method exhibited a signifcantly lower error rate 
than Palettailor with lightness adjustment (� = 0.021), Palettailor 
with alpha blending (� = 0.023), and Tableau Highlighter with de-
fault assignment (� = 0.0097). There was, however, no signifcant 
diference compared to Tableau Highlighter with optimal assignment 
(� = 0.92). There were no signifcant diferences in response time 
between our method and the benchmarks as the P value is more 
than 0.05 (� > 0.05). We also did not fnd a signifcant interaction 
efect between the colorization methods and the number of clusters 
(� (4, 1790) = 0.2685; � > 0.1), meaning that visual emphasis is not 
afected by the number of clusters, which is consistent with the 
behavior of a popout efect. 
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The results indicate that our palette generation method out-
performs commonly-used highlighting methods (e.g., lightness ad-
justment, alpha blending, and Tableau Highlighter with default as-
signment), while being comparable to the best-case scenario of 
a state-of-the-art commercial system such as Tableau Highlighter 
with optimal assignment. The results thus suggest an efective visual 
emphasis for our method, exceeding the performance of commonly 
applied manual highlighting techniques. We therefore consider H2 
to be confrmed. 

5.2.3 Matching task. 
As shown in Fig.7(d), we asked participants to select the cluster from 
the scatterplot whose color most closely matches the indicated color. 
The purpose of this color matching task was to examine whether our 
approach can maintain class recognition even when class color is 
changed in response to interactive highlighting. We conducted this 
task through AMT with 30 participants being accepted. According 
to the completion time in the study, we paid each participant $1.25. 
No participant claimed color vision defciency on their informed 
consent. 

Figure 11: Confdence interval plots and statistical tables for 
the color-matching task. 

Results. Fig. 11 shows the results of the matching task. Our method 
leads to a signifcantly lower error rate and response time compared 
to Tableau Highlighter with default assignment and Tableau High-
lighter with optimal assignment, while it is slightly better than Palet-
tailor with lightness adjustment and Palettailor with alpha blending. 
No signifcant interaction between colorization methods and cluster 
number was found (� (4, 1790) = 2.163; � > 0.05). The result indi-
cates that our palette generation method has a better performance 
than the benchmark conditions for the matching task w.r.t. color 
consistency, which confrms H3. 

5.2.4 Selecting task. 
We asked participants to select all colors from the palette that 
appear within a given circle. The user interface is shown in Fig.7(b). 
For this task, participants need to discriminate diferent colors 
around a small area, to examine how well the diferent methods 
can preserve the context of emphasized data. We conducted this 
task through AMT with 30 participants being accepted. We paid 
each participant $2.00 for an hourly wage consistent with the US 
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minimum. No participant claimed color vision defciency on their 
informed consent. 

Figure 12: Confdence interval plots and statistical tables for 
the selecting task. 

Results. Fig.12 shows the results of the visual separability experi-
ment for local discrimination. Our method exhibits a signifcantly 
lower error rate relative to all other benchmark conditions, except 
Palettailor with alpha blending. Although non-signifcant, we still 
achieved a better error rate than Palettailor with alpha blending 
(� = 0.16). As for the completion time, our method achieves better 
performance than all other conditions, with a signifcantly shorter 
time than Palettailor with alpha blending (� = 0.03). These results 
support H3. No interaction was found between colorization methods 
and cluster number (� (4, 1790) = 0.5798; � > 0.1). 

5.3 Discussion 
We evaluated the efectiveness of our approach against the bench-
mark conditions through two crowdsourced experiments for two 
diferent scenarios (static visualization and interactive exploration). 
In the counting task for a static visualization (see Fig.8), we found 
that Palettailor outperformed the Tableau conditions and Our Method 
(static). This is reasonable since the design goal of Palettailor is to 
maximize class discriminability. Our Method (static) seems to be 
slightly better than Tableau with optimal assignment. Notably, the 
latter achieves better performance than Tableau with default assign-
ment, which indicates that an optimal assignment approach [42] 
does indeed improve discriminability for visualization. The results 
suggest that while Palettailor outperforms our method in the count-
ing task for the global discriminability, the advantage is not sub-
stantial, thus representing a small overhead to pay for the ability 
to emphasize the desired classes. 

For interactive exploration, our method shows a better perfor-
mance. In the highlighting task, we found that participants intu-
itively select the emphasized class in our approach. There is a 
signifcant advantage for Our Method over some of the benchmark 
conditions (Palettailor with lightness adjustment, Palettailor with 
alpha blending and Tableau Highlighter with default assignment). 
This indicates that our method attains better visual emphasis than 
most benchmarks while being comparable to the best-case sce-
nario Tableau Highlighter with optimal assignment). Interestingly, 

Palettailor with alpha blending did not yield good highlighting per-
formance. One reason is that colors from Palettailor might have 
a similar lightness to the background, e.g., light yellow class in 
Fig.1(b)-top. Another reason is that blended colors could inadver-
tently attract attention away from the desired class, some examples 
can be found in the supplementary materials. 

As for the two context-preserving tasks, frst, we found that in 
the color matching task, Our Method (interactive) performed better 
than Tableau Highlighter with default or with optimal assignment, 
while achieving similar performance to Palettailor, both with light-
ness adjustment and alpha blending. This is likely because our 
method, like other lightness adjustment approaches, works by only 
perturbing lightness while maintaining the original hue and satu-
ration. When the background color is achromatic (white), during 
alpha blending, the hue will not be changed, thus achieving good 
performance. However, for a chromatic background, alpha blending 
might result in poor class discriminability and color consistency 
(see Fig. 13). Since Our Method also preserves name similarities for 
de-emphasized colors, it slightly outperforms Palettailor with light-
ness adjustment and Palettailor with alpha blending. An example 
illustration of this phenomenon can be found in the supplementary 
materials. For the selecting task, we found that our method achieves 
the best performance among all benchmark conditions, even though 
there was no signifcant diference to Palettailor with alpha blend-
ing. However, Our Method leads to a signifcantly shorter response 
time than the alpha blending approaches, likely because the latter 
potentially introduces new blended colors that could distract the 
viewer. 

Figure 13: Results generated for diferent methods with a 
blue background: (a) (top) palette and colorized scatterplot 
from Palettailor; (bottom) a highlighting efect is achieved 
by reducing the opacity of non-selected data points; (b) (top) 
Tableau palette and colorized scatterplot; (bottom) achieving 
a highlighting efect by applying Tableau Highlighter func-
tion; (c) (top) salient palette and colorized scatterplot by our 
context-preserving highlighting method; (bottom) highlight-
ing result by combining salient and faint color palette. 

The results indicate that our method maintains class discrim-
inability for all classes while still achieving an intuitive highlighting 
efect. An added beneft to our context-preserving approach is that 
it automatically adapts to diferent backgrounds, thus producing 
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Figure 14: Exploring the MNIST dataset [16] with our context-preserving highlighting technique. Result of static visualization 
(a) and the corresponding highlighting results by diferent selection methods: (b,c) legend selection, (d) brushing selection. 

more satisfactory results for chromatic backgrounds than Palet-
tailor and Tableau Highlighter (see Fig.13). A detailed analysis of 
response time, including the infuence of class number, along with 
an analysis of potential speed-accuracy tradeofs, can be found in 
the supplementary materials. 

Our evaluation has some limitations: First, we only tested two 
state-of-the-art colorization methods (Palettailor and Tableau, and 
their corresponding highlighting strategies). This choice was done 
to mitigate fatigue efects on participants. Whether other palettes 
(e.g., ColorBrewer’s collection and Colorigorical) would lead to sim-
ilar results remains to be seen. Second, our experiment only focused 
on color-based highlighting; however, many methods exist using 
other visual variables to emphasize classes such as shape and mark 
size. Third, the experimental setup is idealized: the scatterplots 
are relatively simple and the emphasis is applied to entire classes. 
The evaluation should therefore be extended with more complex 
datasets and tasks. We also did not measure participant preference 
(e.g. from an aesthetics standpoint, where designer-crafted palettes 
might perform better than auto-generated results), leaving this as-
pect as future work. Finally, although we made attempts to reduce 
learning efects (e.g., random display order, randomly rotating scat-
terplots), some residual learning could still have happened due to 
stimuli rotation. 

6 SYSTEM AND CASE STUDIES 
To aid designers in crafting categorical color palettes with contex-
tual highlighting efects, we developed a web-based design tool that 
embodies our methodology4. Details of the system can be found in 
the supplementary materials. The interface allows users to select 
and highlight data via a variety of interactions, including clicking 
individual data points, clicking color legend to select an entire class, 
and brushing to select points that lie within a range. In the follow-
ing, we present two extensions of our technique and conducted 
two case studies on real-world datasets. 

Extensions for Bar and Line Charts. In addition to scatterplots, 
our color mapping method can be easily extended to other categor-
ical visualization types such as bar or line charts. This is achieved 
by treating each bar or line segment as a mark and then using the 

4https://palettailor.github.io/highlighting/ 

same method to compute their class contrasts, where the detailed 
description can be found in the supplementary materials. 

Extensions for Multi-view Visualizations. Our technique can 
be extended to generate consistent color mapping schemes for 
multi-view visualizations of the same multi-dimensional data. For 
example, the line chart in Fig. 15 displays trends of diferent classes, 
the bar chart shows the total number of each class. Following one of 
the multi-view consistency principles that the same nominal values 
in a feld should be encoded by the same colors across diferent 
charts [29], we generate the color mapping scheme for the view 
with most overlap between classes and apply this scheme to the 
other views. 

6.1 Handwritten Digits Dataset 
Here, we analyzed the MNIST data of handwritten digits [16], which 
contains 784 data dimensions with ten classes. We project this 
dataset onto a 2D scatterplot using t-SNE with 1000 random distinct 
samples. As shown in Fig. 14(a), our technique frst colorizes the 
scatterplot with an overall good class discriminability. The user 
can click on the legend color to select the corresponding class – 
in this case, the green class (see Fig. 14(b)), which represents the 
number 9. She fnds that this class is heavily overlapping with red, 
so she also clicks to select the latter (see Fig. 14(c)). She speculates 
that this might be caused by the similar appearance of the two 
numbers. To further investigate similar overlaps, she brushes over 
the scatterplot to select the left bottom region: the orange, sky blue, 
and purple classes representing 5, 3, and 8, respectively. During 
this exploration, our technique produces consistently good pop-
out efects, as the emphasized data is interactively selected and 
de-selected (see Figs. 14(b, c, d)). Additionally, class separability 
and color consistency are well maintained regardless of which data 
subset is highlighted. 

6.2 Air Quality Dataset 
We conducted a second case study with a real-world dataset, this 
time using line and bar charts. Here, we analyzed an air quality 
dataset provided by Vito et al. [5] containing hourly recordings of a 
multi-sensor gas device deployed in an Italian city for two months 
in 2004. The dataset contains fve classes corresponding to diferent 
gases: CO, NMHC (non-metanic hydrocarbons), ��� , ��2 and 
�3. 

https://palettailor.github.io/highlighting/
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Figure 15: Visualizing an air quality dataset [5] using two linked views with our context-preserving highlighting technique. 
(a) (top) colorizing the line chart by using a salient color palette; (bottom) applying the salient palette to a bar chart; (b) (top) 
highlighting result by combining salient and faint color mapping schemes with legend selection; (bottom) corresponding 
bar chart; (c) (top) highlighting result for the brushing selection; (bottom) corresponding bar chart for the selected data. Our 
method produces a good highlighting efect while maintaining class discriminability during interactive exploration. 

Fig. 15 shows line and bar charts colorized using our technique, 
where each gas type is represented by a unique color. The line charts 
represent the gas change over time and the bar charts represent the 
total amount of each gas type. We explore one class by interactively 
highlighting it through a legend selection. Fig. 15(b) emphasizes the 
pink class, which represents ��� . Our method achieves good over-
all class discriminability while allowing the user to still investigate 
any of the de-emphasized classes. The brush selection results shown 
in Fig. 15(c), show that our technique maintains good separability 
between all trendlines, for both selected and non-selected classes. 
This ability to interactively vary the highlight while still maintain-
ing context makes our method especially suitable for interactive 
visual exploration. 

7 CONCLUSION AND FUTURE WORK 
We presented an interactive context-preserving color highlighting 
approach for multi-class scatterplots. Our method allows viewers 
to intuitively identify points of interest, while ensuring visual dis-
criminability of all classes in a visualization, and maintaining a 
stable color mapping scheme during interactive exploration. This 
goal is achieved by generating two contrastive palettes and then 
dynamically combining these two palettes, thus allowing for an 
interactively-variable focus efect. In addition to modeling intra-
class discriminability, our method also ensures sufcient contrast 
with the background. We evaluated our approach through a crowd-
sourcing study, which empirically demonstrates reliable highlight-
ing and good class discrimination for our generated palettes. To help 
users generate such designs, we extended this method to other cat-
egorical visualizations such as bar charts and lines. In addition, we 
propose a web-based tool that implements our approach, enabling 
a quick, data-driven generation of palettes for a context-preserving 
emphasis efect. 

Our user study focuses on contextual highlighting to points of in-
terest in single view visualizations. In the future, we will investigate 

its efectiveness on tasks spanning multiple views (e.g., comparison 
tasks [28]). In addition to color, other channels (e.g., shape [20] and 
mark size [35]) are known to have an efect on visual prominence, 
which could interact with our color-based highlighting approach. 
Future work could explore the possibility of modeling these factors 
to produce reliable intrinsic highlighting across multiple visual 
channels. 

Second, our approach produces colors that might not be friendly 
to people with color vision defciency. Future work could thus 
extend our palette generation techniques to incorporate physiologi-
cally based models of color-vision defciency [22]. Such an extension 
could allow for color optimization with accessibility constraints. 
Aesthetic preferences should also be concerned in the automated 
colorization method to better serve users. 

Lastly, we evaluated the efectiveness of our palettes against a 
limited number of highlighting techniques. However, since there 
are many diferent highlighting methods, such as shape, size, and 
animation, it would be interesting to fully investigate the strengths 
and limitations of these approaches for engendering a highlight 
efect. 
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