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Abstract

Large Language Models (LLMs) face significant limitations when applied to large-1

scale graphs, struggling with context constraints and inflexible reasoning. We2

present GraphChain, a framework that enables LLMs to analyze complex graphs3

through dynamic sequences of specialized tools, mimicking human exploratory4

intelligence. Our approach introduces two key innovations: (1) Progressive Graph5

Distillation, a reinforcement learning mechanism that generates optimized tool se-6

quences balancing task relevance with information compression, and (2) Structure-7

aware Test-Time Adaptation, which efficiently tailors tool selection strategies to8

diverse graph topologies using spectral properties and lightweight adapters without9

costly retraining. Experiments show GraphChain significantly outperforms prior10

methods, enabling scalable and adaptive LLM-driven graph analysis. 111

1 Introduction12

Graph-structured data represents a fundamental paradigm across diverse domains, from social13

networks and molecular structures to knowledge bases and recommendation systems. While large14

language models (LLMs) have demonstrated remarkable reasoning capabilities, they encounter15

significant challenges when processing graph data.16

Recent approaches to enhancing LLMs’ graph processing capabilities have taken two primary17

directions. The first attempts to adapt LLMs to directly process graph structures—either through18

tokenization or natural language descriptions [Chai et al., 2023, Wang et al., 2023b]. However, this19

approach faces Context Exhaustion: large-scale graphs with millions of nodes and edges cannot be20

effectively compressed within LLMs’ context limitations, making it computationally infeasible to21

load entire subgraphs into their context windows (Figure 1, left).22

Recognizing these limitations, a second direction draws inspiration from tool learning paradigms.23

Approaches like Graph-ToolFormer [Zhang, 2023a] and GraphForge [Wang et al., 2024c] pioneered24

integrating specialized tools with LLMs for graph reasoning, enabling models to call external graph25

processing functions. However, these methods primarily conceptualize tool learning as text generation,26

relying on single-step tool invocations with textually described graph structures. This approach leads27

to Reasoning Hallucination (Figure 1, middle), as it places unrealistic demands on individual tools28

to provide comprehensive functionality for complex graph analysis.29

Complex graph analysis parallels human exploration of unknown environments. Just as humans30

navigate unfamiliar territories through interactive, adaptive exploration—where each step reveals in-31

formation that guides subsequent decisions—effective graph analysis requires progressive, sequential32

information gathering rather than comprehensive analysis in one operation. A field researcher might33

1The code is available in https://github.com/GraphChain651/GraphChain
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Tokenizing Graph Component

Prompt: 

Given a transaction graph: <graph>, which 
account has the most transactions in the 
network?

Graph 
Encoder

Account F has the most transactions.

Single-Tool Approach

Prompt: 
You are going to… The graph is 
loaded in memory as parameter G, 
you can use the tool to analyze… 
Identify potential fraud accounts.

Structured 
Tool List 

I need to find potential fraud accounts 
by analyzing circular patterns. 
The fraud accounts is

<api>find_circular_patterns(G)</api>

Graph analysis complete

Describing graphs in natural language

Prompt: 
The network contains 500,000 accounts. 
Account A connects to accounts B, C, D, and E 
with transaction values of $500, $300…
Account B connects… 
…

Sequence length exceeded

GraphChain

Prompt: 
You are going to… The graph is 
loaded in memory as parameter G, 
you can use the tool to analyze… 
Identify potential fraud accounts.

Structured 
Tool List 

I need to find potential fraud 
accounts by multiple steps:

Tool Call: <api>find_simple_cycles(G)<api>

Result: [circle_list]

Tool Call: <api>filter([circle_list], 
value=time, filter='>5')<api>

Result: [filter_list]

According to the analysis, there are 
following potential fraud account: 
AK, CF, DD, …

Figure 1: Comparison of Graph Processing Approaches with LLMs. Left: Methods suffer from Context
Exhaustion where large graphs exceed LLM context windows. Center: Single-tool approaches face Reasoning
Hallucination with fixed, predefined tools. Right: Our GraphChain framework enables human-like exploratory
analysis through sequential tools that progressively narrow focus in large-scale graphs.

first survey an area broadly before focusing on regions of interest; similarly, graph analysis benefits34

from incremental understanding built through sequential operations.35

Inspired by human exploratory cognition, we propose GraphChain, a novel framework enabling36

LLMs to process large-scale graphs through dynamic tool-chaining (Figure 1, right). GraphChain37

decomposes complex graph problems into sequences of specialized operations, activating LLMs’38

reasoning capabilities to create, refine, and execute chains of graph processing tools. This approach39

allows progressive refinement and deeper exploration of graph structures, mimicking how human40

experts methodically investigate complex systems layer by layer.41

The implementation of GraphChain addresses two significant technical challenges:42

1. Informative Tool Sequence Generation requires determining optimal tool sequences for diverse43

analytical tasks, navigating an exponentially growing space of possible combinations. Traditional44

approaches struggle with this challenge due to scarce labeled data for complex graph analysis.45

2. Adaptive Graph Structure Sensing must address real-world graph data exhibiting distributional46

shifts and structural variations. Unlike natural data types, graph structures are heavily human-47

defined with domain-specific schemas, leading to severe distribution shifts across domains.48

To generate informative tool sequences, we propose a progressive graph distillation training mecha-49

nism. Our key insight is that effective graph analysis mirrors human exploration: beginning broadly50

and systematically narrowing focus as relevant information emerges. This approach transforms the51

exponential tool-selection problem into a principled information bottleneck optimization, iteratively52

refining both structural scope and representational complexity while preserving only task-critical53

information—similar to how humans selectively attend to relevant environmental cues.54

For adapting to diverse graphs, we introduce a structure-aware test-time adaptation mechanism. We55

leverage the insight that graph topology fundamentally influences optimal analysis strategies, just as56

explorers adjust techniques for different terrains. Our lightweight adapter dynamically modifies tool57

selection policy based on spectral properties capturing essential structural characteristics, enabling58

GraphChain to maintain effectiveness across diverse graphs while preserving efficiency.59

Our main contributions include:60

• GraphChain, a novel framework leveraging Graph-Oriented Reinforcement Learning with pro-61

gressive information distillation, enabling systematic exploration of large-scale graphs through62

interconnected tool sequences.63

• A structure-aware test-time adaptation mechanism that adjusts tool-chaining strategies based on64

graph topology, enabling efficient transfer to diverse graph structures without costly retraining.65
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• Extensive experimentation demonstrating that GraphChain significantly outperforms existing66

methods by an average of 20.7%, with exceptional scalability handling graphs up to 200,000 nodes67

while maintaining consistent performance.68

2 Related Work69

Tool Learning for LLMs Tool learning for LLMs encompasses tuning-free methods using prompt-70

ing strategies like Chain-of-Thought [Wei et al., 2022], ReAct [Yao et al., 2023], and DFSDT [Qin71

et al., 2023], alongside approaches integrating tools into conversations [Chen et al., 2023] or em-72

ploying structured selection via graphs [Liu et al., 2024], hierarchies [Du et al., 2024], or intent73

filtering [Fore et al., 2024]. Meanwhile, tuning-based methods directly adapt LLM parameters [Xu74

et al., 2023] through behavior cloning with reinforcement learning [Qiao et al., 2024, Yu et al.,75

2024], fine-tuning on specialized decision data [Qin et al., 2023], frameworks for varying tool76

complexities [Gao et al., 2024], and self-verification mechanisms [Mekala et al., 2024].77

Graph Processing with LLMs Recent efforts to enhance LLM capabilities for graph processing78

[Zhang et al., 2024, Wang et al., 2024a] follow several strategies: (1). Direct graph processing79

includes tuning-free approaches where graphs are described textually or visually [Wang et al., 2023b,80

Guo et al., 2023, Zhao et al., 2023, Das et al., 2024], and tuning-required methods that convert graphs81

into specialized token sequences [Chen et al., 2024b, Ye et al., 2024, Tan et al., 2023, Wang et al.,82

2024b]. (2). Tool integration and agent deployment approaches enable LLMs to call external graph83

functions [Zhang, 2023b, Wang et al., 2024c] or operate as autonomous agents that plan, interact with84

graph data, and perform multi-step reasoning [Gu et al., 2024, Wang et al., 2023c, Luo et al., 2023].85

(3). GNN-LLM combinations use GNNs as structural encoders to generate representations fed into86

LLMs [Tang et al., 2024a, Chen et al., 2024b, Tang et al., 2024b, Chai et al., 2023], align GNN and87

LLM representation spaces [Su et al., 2022, Zhao et al., 2022], or fuse GNN and LLM architectures88

[Zhang et al., 2022, Zhu et al., 2024].89

Existing methods suffer from Context Exhaustion and Reasoning Hallucination. GraphChain90

addresses these challenges through sequential, adaptive processing with dynamic tool chains.91

Test-time Adaptation Traditional machine learning assumes identical training and testing distribu-92

tions, but real-world deployments often encounter distribution shifts [Kulinski and Inouye, 2023].93

Test-Time Adaptation (TTA) addresses this challenge [Liang et al., 2025, Alfarra et al., 2025].94

For LLMs, adaptation techniques include test-time prompt tuning [Shu et al., 2022, Ma et al., 2023],95

Parameter-Efficient Fine-Tuning methods like adapters or LoRA [Hu et al., 2022] for efficient updates96

[Shi et al., 2024, Muhtar et al., 2024], and "test-time compute scaling" with iterative refinement,97

search, or self-correction [Jaech et al., 2024, Guo et al., 2025, Suzgun et al., 2025].98

3 Preliminaries and Problem Formulation99

Graph Notation Let G = (V, E) represent a graph, where V = {v1, v2, . . . , vn} is the set of100

n = |V| nodes and E ⊆ V ×V is the set of m = |E| edges. The adjacency matrix A ∈ {0, 1}n×n (or101

Rn×n for weighted graphs) has entries Aij = 1 (or edge weight) if (vi, vj) ∈ E , and 0 otherwise.102

Node features are represented by matrix X ∈ Rn×d. The degree matrix D is diagonal with Dii =103 ∑n
j=1 Aij , and the normalized graph Laplacian is defined as L = I −D−1/2AD−1/2. A node’s104

neighborhood is N (v) = {u ∈ V | (v, u) ∈ E}, and a subgraph G′ = (V ′, E ′) consists of node105

subset V ′ ⊆ V and edge subset E ′ ⊆ E ∩ (V ′ × V ′).106

Graph Processing Tool Library We define a library of graph processing tools T =107

{T1, T2, . . . , TK} that operate on tensor representations within the current memory state m. This108

state encapsulates intermediate results and relevant graph structure, typically containing tensors like109

the adjacency matrix A′ and feature matrix X′ for a subgraph G′ = (V ′, E ′):110

m ≈ (A′ ∈ Rn
′×n′

,X′ ∈ Rn
′×d, . . . ) where n′ = |V ′| (1)

A tool T takes the current memory state m and tool-specific parameters θT as input, producing111

two outputs: (1) A concise natural language summary d of the execution outcome; (2) An updated112

memory state m′. Formally, the tool function is defined as: T : (m, θT ) 7→ (d,m′).113
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Figure 2: (1) Training Phase: Progressive graph distillation where the RL agent learns to select tool sequences
that iteratively reduce the memory state’s (m) Graph Description Length (GDL) while maximizing task relevance.
(2) Structure-aware Test-Time Adaptation: A lightweight adapter (Aψ) tuned by minimizing chain length and
KL divergence generates a structure-specific soft prompt PG based on the graph’s SVD-derived fingerprint zG.

This dual output mechanism allows our framework to provide context-window-friendly summaries to114

the LLM via d, while managing potentially large-scale intermediate graph data within m′, mitigating115

context exhaustion when processing large graphs.116

Sequential Graph Exploration as an MDP Given an analytical query Q and input graph G, we117

model sequential graph exploration as a Markov Decision Process (MDP) M = (S,A, P,R, γ):118

• State Space S: State st encapsulates query Q, graph reference, action history {(ai, di)}t−1
i=0 , and119

memory state mt−1.120

• Action Space A: Actions at = (T, θT ) select a tool T ∈ T with parameters θT , or ’TERMINATE’.121

• Transition Dynamics P : Tool execution produces (dt,mt) = T (mt−1, θT ), updating state st+1122

with new history and memory.123

• Reward Function R(st, at, st+1): Evaluates actions based on progress and task success.124

• Discount Factor γ ∈ [0, 1]: Balances immediate vs. future rewards.125

The agent’s policy πθ(at|st), parameterized by θ, generates a trajectory τ =126

{s1, a1, s2, a2, ..., sT , aT } representing sequential tool interactions. To maximize performance, we127

optimize the expected reward:128

∇Rθ =
∑
τ

R(τ)∇πθ(τ) = Eτ∼πθ,(st,at)∼τ

[
R(τ)

T∑
t=1

∇θ log πθ(at|st)

]
(2)

129

4 Methodology130

GraphChain addresses the challenges of applying LLMs to large-scale graph analysis by formulating131

the problem as a sequential decision-making task solvable via reinforcement learning. Our approach132

centers on two core technical innovations: (1) Progressive Graph Distillation, which promotes133

informative yet compact state representations, and (2) Structure-aware Test-Time Adaptation,134

enabling dynamic adjustment to diverse graph topologies. Figure 2 provides a conceptual overview.135

4.1 Progressive Graph Distillation136

Generating effective tool sequences for complex graph queries involves navigating an exponentially137

large action space. To provide denser learning signals and emulate human-like analytical workflows138

that progress from coarse to fine, we introduce Progressive Graph Distillation.139
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This approach incentivizes the RL agent to pursue both the query objective and manage the complexity140

of its memory state m. We train the agent to prioritize tool sequences that systematically reduce m’s141

data volume while retaining task-critical information, transforming exploration into a guided search142

characterized by iterative refinement. The aim is to progressively shrink m step-by-step, eventually143

yielding a compact final state mN suitable for direct processing within the LLM’s context window.144

4.1.1 Quantifying Memory State Volume and Relevance145

Implementing progressive distillation requires quantifying two key aspects of memory state mt at146

each step t: its data volume and its relevance to query Q.147

Graph Description Length (GDL(mt)): Drawing from the Minimum Description Length princi-148

ple, we introduce Graph Description Length to measure the data size needed to represent the current149

graph state. Assuming memory state mt contains subgraph G′
t = (V ′

t, E ′
t) with n′t = |V ′

t| nodes and150

m′
t = |E ′

t| edges, plus node features X′
t ∈ Rn′

t×df , we define:151

GDL(mt) = L(structure) + L(features) ≈ αsm
′
t + αfn

′
tdf (3)

Coefficients αs, αf ≥ 0 weight the relative contribution of structural versus feature information.152

Task Relevance (Rel(mt,Q)): We employ an auxiliary LLM scorer to assess the utility of mt for153

answering query Q. Since mt may exceed the LLM’s context limits, we use the concise description154

dt produced by the executed tool. We estimate the task relevance by:155

Rel(mt,Q) ≈ LLMScore(prompt(Q, Ht, dt)) ∈ [0, 1] (4)

where Ht = {d0, . . . , dt−1} is the history of preceding descriptions.156

4.1.2 Distillation-based Reward Shaping157

We incorporate progressive distillation into the RL reward function Rt = R(st, at, st+1). The reward158

structure provides feedback during exploration while assessing final task completion:159

Rt =

{
w1 · r̂Succt + w2 · r̂∆GDL

t + w3 · r̂∆Rel
t if t < N

wsolve · EvaluateTaskSuccess(Q, sN+1) if t = N
(5)

where N is the final step index, and the intermediate reward components are:160

• r̂Succt = I(ExecutionSuccess(at, st+1)): Binary reward for valid tool execution.161

• r̂∆GDL
t = tanh

(
βGDL(mt−1)−GDL(mt)

GDL(mt−1)+ϵ

)
∈ (−1, 1): Rewards reduction in relative GDL.162

• r̂∆Rel
t = Relt − Relt−1: Rewards increase in estimated task relevance.163

Weights w1, w2, w3 balance the importance of execution success, volume reduction, and relevance164

gain. Weight wsolve scales the final reward based on overall success in addressing query Q.165

4.1.3 Information Bottleneck Perspective166

Our progressive distillation mechanism aligns with the Information Bottleneck principle, advocating167

for representations that are maximally informative about a target while being maximally compressive168

of input. Our reward function operationalizes this trade-off by incentivizing high task relevance while169

rewarding reductions in state volume.170

Proposition 4.1. Let the input be X = (G,Q), containing task-relevant information Y = AQ171

(the answer) and task-irrelevant information IR, with the Markov structure (Y, IR) → X → mt.172

Assuming the relevance proxy Relt positively correlates with the mutual information I(mt;Y ) and173

the GDL serves as a complexity measure encouraging smaller I(X;mt), optimizing policy πθ with174

reward function Rt guides the generation of memory states mt that tend to minimize irrelevant175

information I(IR;mt|Y ) while preserving relevant information I(mt;Y ).176

Detailed proof is provided in Appendix A. This proposition provides theoretical support for our177

distillation approach. By rewarding both relevance gain and volume reduction, the RL process steers178

the agent toward behaviors that effectively filter graph data—reducing the representational footprint179

of task-irrelevant components while preserving critical information.180
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4.1.4 Policy Optimization181

To optimize the LLM agent’s policy πθ, we implement Proximal Policy Optimization (PPO), using182

Generalized Advantage Estimation (GAE) for improved stability:183

ÂGAE
t (θ, ω) =

N−t∑
l=0

(γλ)lδt+l, where δt = Rt+1 + γVω(st+1)− Vω(st) (6)

Here, λ ∈ [0, 1] is the GAE trace decay parameter, Vω is the learned value function, γ is the discount184

factor, and Rt+1 is the distillation-aware reward.185

Following the PPO-clip approach, we maximize a clipped surrogate objective based on trajectories τ186

sampled from policy πθ:187

LCLIP(θ) = Êτ∼πθ

[
N∑
t=0

min

(
πθ(at|st)
πθold(at|st)

ÂGAE
t , clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
ÂGAE
t

)]
(7)

where πθold is the old policy used for generating trajectories, and ϵ is the clipping hyperparameter.188

4.2 Structure-aware Test-Time Adaptation189

4.2.1 Graph Structural Fingerprinting190

To provide global structural awareness for large-scale graphs, we derive a concise graph fingerprint.191

We compute the normalized graph Laplacian L = I−D−1/2AD−1/2 and consider its Singular Value192

Decomposition, L = UΣVT . The smallest singular values σi capture dominant, low-frequency193

components reflecting macroscopic graph properties. We define the structural fingerprint as:194

zG = (σ0, σ1, . . . , σM ) ∈ RM+1.195

While full SVD is intractable for very large graphs, these M + 1 smallest singular values (where196

M ≪ N ) can be computed efficiently using iterative algorithms, effectively distilling essential global197

topology into a compact vector. We provide complexity analysis in Appendix G.198

4.2.2 Structure-Conditioned Prompt Generation199

STTA employs a continuous adaptation mechanism through adapter network Aψ, which maps the200

graph’s structural fingerprint zG to a soft prompt PG = Aψ(zG) ∈ RLp×demb :201

This generated prompt is prepended to the standard embedding E(st) of the agent’s state, modifying202

the input to the frozen LLM policy: LLMInput(st, G) = [PG;E(st)] = [Aψ(zG);E(st)].203

The agent’s action is then sampled from the policy conditioned on this augmented input. During204

adaptation, only the smaller set of adapter parameters ψ are tuned, enabling efficient adaptation.205

4.2.3 Self-Supervised Adaptation206

Given the absence of ground-truth rewards for user query Q on unseen test graphGtest, STTA employs207

a self-supervised strategy using auxiliary queries. We leverage a general-purpose LLM to generate208

diverse auxiliary graph analysis queries relevant to Gtest’s structure.209

For each auxiliary query, we perform rollouts using the frozen base policy conditioned on the graph-210

specific prompt, yielding trajectories. The adaptation objective balances planning efficiency and211

policy regularization:212

LSTTA(ψ) = EQaux,i,τi∼πψ(·|s;Gtest)

wLNτi + wKL

Nτi−1∑
t=0

DKL(πψ(·|st;Gtest)||πorig(·|st))

 (8)

The components of this objective are: (1) Chain Length (Nτi ) encouraging efficient planning, and213

(2) KL Divergence Regularization ensuring helpful but not drastic changes.214

We minimize this objective using the REINFORCE algorithm, tuning Aψ to generate prompts that215

enhance efficiency while maintaining fidelity to learned behaviors, effectively adapting the frozen216

policy to Gtest’s specific structure.217
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5 Experiment218

5.1 Experimental Setting219

Graph Dataset. We evaluate GraphChain on five diverse graph datasets representing different220

real-world domains, as illustrated in Table 1.221

Table 1: Statistics of graph datasets used in our experiments.
Scenario Dataset #Nodes #Edges #Features Type Description

Citation Graphs
Cora 2,708 10,556 1,433

Directed
Academic papers connected by
citation relationships [Yang
et al., 2016]

CiteSeer 3,327 9,104 3,703
PubMed 19,717 88,648 500

Social Networks Facebook 4,039 88,234 - Undirected Online interactions [Leskovec
and Mcauley, 2012]Twitter 81,306 1,768,149 - Directed

Chemical Molecules QM9 ∼18.0/graph ∼37.3/graph 11 Undirected Molecular structures with bonds
between atoms [Wu et al., 2018]

Traffic Networks METR-LA 207 1,515 - Directed Road networks with geographic
constraints [Chen et al., 2020]

Financial Networks Elliptic 203,769 234,355 165 Directed Transaction networks [Weber
et al., 2019]

Instruction Data. We constructed two complementary datasets: (1) an SFT dataset comprising 9,986222

(query, tool sequence, answer) triplets based on 45 carefully selected NetworkX functions2, and223

(2) an RL dataset containing 3,000 expert-annotated (query, answer) pairs (600 per graph scenario).224

We allocated 500 pairs per scenario for training and 100 for testing, with domain experts crafting225

exemplary instruction templates to ensure ecological validity. See Appendix F for details.226

Baselines. We evaluated GraphChain against state-of-the-art methods from two categories:227

(1). For Text-Instruction methods, we tested leading closed-source LLMs (Claude-series [An-228

thropic, 2024], GPT-series [OpenAI, 2023], and GLM4-0520 [GLM, 2024]) using two-shot229

prompting with Chain-of-Thought reasoning, and reproduced specialized graph reasoning meth-230

ods (NLGraph [Wang et al., 2023a], GraphWiz [Chen et al., 2024a]).231

(2). For Tool-Instruction methods, we compared against recent tool-augmented approaches232

(Graph-ToolFormer [Zhang, 2023a], GraphForge [Wang et al., 2024c]).233

To ensure fair comparisons with existing baselines—all requiring the entire graph in the context234

window—we partitioned original graphs into subgraphs with fewer than 100 nodes for overall235

comparison. We use the same input for both baseline methods and GraphChain. In our scalability236

experiment (Section 5.4), GraphChain maintains comparable performance even when scaling to237

graphs with approximately 200,000 nodes. Further details are provided in Appendix D.238

Training Setup. We used two NVIDIA A800 GPUs with LoRA-based fine-tuning (rank r=16,239

alpha=32) on the Qwen2.5-7B-instruction model. Further details are provided in Appendix C.240

5.2 Main Results241

Table 2 presents performance comparisons of GraphChain against state-of-the-art baselines, with242

statistical significance confirmed by two-sample t-tests (p < 0.05). Key insights include:243

• GraphChain substantially outperforms all baselines, achieving 84.7% average accuracy compared244

to 70.2% for the best baseline (GraphForge), representing a 20.7% relative improvement.245

• Among text-instruction baselines, GPT-4o with approximately 200B parameters demonstrates246

superior performance (59.4% average accuracy), confirming the applicability of scaling laws to247

graph reasoning tasks.248

• Specialized graph reasoning approaches like GraphForge (70.2% average accuracy) significantly249

outperform even the largest general-purpose LLMs.250

• GraphChain achieves these results with only 7B parameters, compared to GraphForge’s 8B and251

GPT-4o’s 200B, demonstrating remarkable parameter efficiency.252

2https://networkx.org. Please refer to Appendix E for more details.
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Table 2: Performance comparison (accuracy %) across five real-world graph reasoning scenarios.
Text-Instruction Methods

Model Parameters Financial Network Chemical Molecule Social Network Citation Graph Traffic Network Average
Claude-3-Sonnet - 21.7 ± 1.8 47.0 ± 2.2 21.5 ± 3.2 17.7 ± 2.1 16.8 ± 2.0 24.9 ± 2.3
GPT-3.5-turbo ∼175B 36.6 ± 2.1 23.0 ± 3.7 18.2 ± 3.6 12.2 ± 0.8 19.4 ± 1.9 21.9 ± 2.4
Claude-3-Haiku ∼20B 12.2 ± 3.0 52.9 ± 3.2 50.3 ± 3.4 19.8 ± 2.0 13.9 ± 2.4 29.8 ± 2.8
Claude-3-Opus ∼137B 23.6 ± 2.1 42.4 ± 1.4 51.9 ± 1.3 36.7± 3.1 43.4 ± 3.3 39.6 ± 2.2
GraphWiz 13B 41.1 ± 3.9 52.4 ± 2.6 61.5 ± 3.5 68.0 ± 2.1 38.4 ± 1.9 52.3 ± 2.9
NLGraph ∼100B 52.1 ± 3.4 58.4 ± 2.5 65.2 ± 2.3 59.4 ± 0.5 39.8 ± 1.8 55.0 ± 2.1
GPT-4o ∼200B 57.5 ± 1.9 62.7 ± 3.6 65.2 ± 3.9 71.5 ± 3.4 43.4 ± 1.6 59.4 ± 2.6

Tool-Instruction Methods
Graph-ToolFormer 8B 47.5 ± 1.9 68.1 ± 4.8 74.7 ± 4.2 61.4 ± 3.4 65.8 ± 4.5 62.4 ± 3.5
GraphForge 8B 63.5 ± 3.5 70.9 ± 5.4 80.4 ± 4.2 63.4 ± 4.4 73.5 ± 3.1 70.2 ± 3.8

GraphChain 7B 81.5 ± 2.2 81.1 ± 0.7 89.6 ± 2.0 83.6 ± 2.6 84.1 ± 0.3 84.7 ± 1.8
Relative improvement (%) - +28.3% +14.4% +11.4% +16.9% +14.4% +20.7%

† Boldface denotes the highest score, and underline indicates the best result among baselines.

5.3 Ablation Study253

We introduced two variants: (1) w/o graph distillation, where the progressive graph distillation254

mechanism is disabled; and (2) w/o test-time adaptation, where the Structure-aware Test-Time255

Adaptation (STTA) component is removed during inference. Figure 3 reveals several key insights:256

First, GraphChain consistently outperforms GraphForge across all graph scenarios, demonstrating257

the superiority of our approach. Second, Removing either component leads to performance degra-258

dation, confirming that both play critical roles in enabling effective tool-chaining and structural259

understanding. Third, The performance drop is more severe when graph distillation is removed260

compared to when disabling STTA, highlighting that progressive distillation is particularly crucial261

for graph analysis. Lastly, GraphChain without test-time adaptation still outperforms GraphForge262

in most scenarios, indicating that our multi-step tool-chaining approach with graph distillation is263

inherently more effective than single-step tool invocation patterns.264
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5.4 Scalability Analysis265

We stratified our evaluation dataset based on graph size (node count) and reasoning complexity (tool266

sequence length) to assess how performance scales with these dimensions. Figure 4 reveals:267

(1). As graph size increases, baselines exhibit significant performance degradation, with GPT-4o268

declining more dramatically, demonstrating the limitations of text-instruction for larger graphs.269

(2). GraphChain maintains its performance advantage consistently across all graph sizes tested,270

including graphs with up to 200,000 nodes. This exceptional scalability stems from representing271

memory states through concise natural language summaries rather than direct graph descriptions.272
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(3). While all methods perform well on simple queries (requiring 1-2 tool calls), performance273

disparities increase with query complexity. Both GPT-4o and GraphForge show steep declines274

for queries requiring 4-5 tool calls, while GraphChain maintains higher accuracy, demonstrating275

superior capability for multi-step reasoning.276

5.5 Transfer Learning Evaluation277

To assess transfer capabilities, we fine-tuned GraphChain exclusively on Financial Network and278

evaluated on three unseen domains, comparing performance with and without the STTA module.279

Table 3: Results (accuracy %) when training on Financial Network and testing on other domains.
Model Social Network Citation Graph Traffic Network
GraphChain (in-domain) 89.6 83.6 84.1
GraphChain w/ STTA 86.8 (-3.1%) 79.2 (-4.3%) 80.3 (-4.5%)
GraphChain w/o STTA 84.5 (-5.7%) 75.1 (-10.2%) 77.4 (-8.0%)

Results in Table 3 demonstrate GraphChain’s strong transfer learning capabilities, with cross-domain280

performance closely approaching in-domain results. The STTA mechanism substantially improves281

transfer performance, reducing accuracy drops by 2.6%, 5.9%, and 3.5% across the three target282

domains compared to the variant without STTA, confirming its effectiveness in adapting to diverse283

graph structures without domain-specific retraining.284

5.6 Tool Chain Analysis285

To understand how GraphChain adapts its exploration strategy across domains, we categorized tools286

into six functional clusters and analyzed their usage patterns.287

13.9% 10.8%

26.7%

24.3%

17.6%

6.7%

Financial Network

16.5% 13.1%

10.2%

28.8%
20.4%

11.0%

Social Network

19.6%
8.6%

20.9%

16.1%15.9%

18.9%

Citation Graph

13.7% 17.5%

33.8%
18.6%

6.3%

10.1%

Traffic Network

Graph Statistics Subgraph Extraction Path Planning Centrality Measures Community Detection Connectivity

Figure 5: Distribution of tool types utilized by GraphChain across different graph domains.

Figure 5 reveals distinct exploration patterns adapted to each domain’s characteristics. Path Planning288

tools dominate in Traffic Network (33.8%) and Financial Network (26.7%), reflecting the importance289

of traversal analysis. Social Network analysis relies on Centrality Measures (28.8%) and Community290

Detection (20.4%), aligning with the importance of influence and clustering. Citation Graph process-291

ing shows a more balanced distribution with significant usage of Connectivity tools (18.9%). These292

domain-specific variations demonstrate GraphChain’s ability to adaptively construct appropriate293

tool sequences on different graph scenarios.294

6 Conclusions and Limitation295

In this paper, we introduced GraphChain, a novel framework that enables LLMs to effectively296

process and reason over large-scale graph data through dynamic tool-chaining. By integrating297

progressive graph distillation with structure-aware test-time adaptation, GraphChain addresses the298

fundamental challenges of context exhaustion and reasoning hallucination that plague existing299

graph processing approaches. Our extensive experiments across diverse domains demonstrate that300

GraphChain significantly outperforms prior methods.301

Our current implementation primarily focuses on static graphs and may require adaptation for302

dynamic or temporal graph structures that evolve over time. The tool library used in our experiments,303

though comprehensive, could be expanded to include more domain-specific operations for specialized304

applications. These limitations present valuable directions for future research.305
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A Proof of Proposition 4.1451

We start with the fundamental assumptions:452

1. The input X is generated from underlying factors including task-relevant information Y and453

task-irrelevant information IR.454

2. The process forms a Markov chain: (Y, IR) → X → mt. This signifies that the memory455

state mt is generated based on the input X , which itself is derived from the underlying456

factors (Y, IR).457

3. The optimization objective derived from the reward function Rt (Eq. 5) encourages policies458

that produce trajectories where intermediate states mt have high task relevance Rel(mt,Q)459

and low complexity/volume GDL(mt).460

4. Based on the proposition’s statement, maximizing relevance correlates with maximizing461

I(Y ;mt), and minimizing GDL correlates with minimizing the overall information captured462

from the input, I(X;mt).463

According to the Data Processing Inequality (DPI) [Beaudry and Renner, 2011] applied to the Markov464

chain (Y, IR) → X → mt, the information that the final representation mt retains about the initial465

factors (Y, IR) cannot exceed the information it retains about the intermediate variable X:466

I((Y, IR);mt) ≤ I(X;mt) (9)

Now, we apply the chain rule for mutual information to the term on the left-hand side:467

I((Y, IR);mt) = I(Y ;mt) + I(IR;mt|Y ) (10)

Here, I(Y ;mt) represents the information that the memory state mt contains about the relevant468

variable Y . The term I(IR;mt|Y ) represents the additional information that mt contains about469

the irrelevant variable IR, given that the relevant information Y is already known. This term470

quantifies the amount of irrelevant information captured by mt beyond what is already explained by471

its correlation with Y .472

Substituting the expansion from Eq. 10 into the DPI (Eq. 9), we obtain:473

I(Y ;mt) + I(IR;mt|Y ) ≤ I(X;mt) (11)

Rearranging this inequality gives us an upper bound on the conditional mutual information involving474

the irrelevant component:475

I(IR;mt|Y ) ≤ I(X;mt)− I(Y ;mt) (12)

This inequality shows that the amount of irrelevant information retained in mt (conditioned on the476

relevant part Y ) is upper-bounded by the difference between the total information mt captures from477

the input X and the useful information it captures about the target Y .478

Now, let’s consider the optimization objective implied by the progressive distillation reward function479

(Eq. 5). This objective aims to find a policy πϕ that maximizes the expected return. The reward480

structure encourages steps that increase relevance (proxy for I(Y ;mt)) and decrease GDL (proxy481

for I(X;mt)). Thus, the optimization process implicitly seeks intermediate states mt that achieve a482

trade-off, aiming for:483

• High I(Y ;mt) (maximize information about the answer)484

• Low I(X;mt) (minimize total information stored, i.e., compress the input)485
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By striving to maximize I(Y ;mt) and minimize I(X;mt), the optimization process is effectively486

attempting to minimize the upper bound I(X;mt)− I(Y ;mt) found in Eq. 12.487

Minimizing this upper bound serves as a direct mechanism to suppress the amount of irrelevant488

information I(IR;mt|Y ) contained in the memory state mt. Therefore, optimizing the distillation-489

aware reward function encourages the policy to generate representations that form an information490

bottleneck, preserving task-relevant information while actively discarding task-irrelevant information,491

as quantified by the bound derived from the Data Processing Inequality.492

B Case Study493

Query: 
Help me identify the largest simple cycle in this transfer graph, and then determine which transactions within this cycle have amounts exceeding 1,000,000.

Step 1
GraphChain’s Analysis Process

Step 2

Step 3

Step 4

Thought:
First, clarify that the type of the graph is a multidigraph. To facilitate the subsequent cycle detection, it needs to be converted to an undirected graph, which 
can avoid the complexity caused by direction issues during cycle detection. Use the to_undirected function from the NetworkX library to convert the 
multidigraph G into an undirected graph.
Action:

<API>to_undirected()</API>
Result:
The result is not a dictionary object, but a graph object named undirectedgraph.
Result_Description:
undirectedgraph is the undirected graph obtained after conversion, with the direction of edges removed to facilitate subsequent cycle detection operations.
You can proceed with cycle detection and other operations on undirectedgraph, such as using other functions from NetworkX to process this graph.
(The number of tokens in the result exceeds the limit of the context window at this point.)

Thought:
After obtaining the undirected graph, it is necessary to find all the simple cycles within the graph. The simple_cycles function is used for this purpose, which 
returns a list of all simple cycles in the graph, with each simple cycle represented as a list of nodes.
Action:

<API>simple_cycles()</API>
Result:
The variable largestcycle stores the list of the largest cycle, where the cycle is represented as a list of nodes.
Result_Description:
largestcycle contains the largest cycle in the graph, represented as a list of nodes.
You can proceed with further operations on largestcycle, such as checking the weights of the edges within the cycle.
(The number of tokens in the result exceeds the limit of the context window at this point.)

Thought:
For the largest cycle, it is necessary to tally the weights of all edges within the cycle. The get_edge_data() function is required to obtain the weight of each 
edge. Subsequently, each edge in the cycle is iterated over to determine whether its weight exceeds 1,000,000.
Action:

<API>get_edge_data()</API>
Result:
For the largest cycle, it is necessary to tally the weights of all edges within the cycle. The get_edge_data() function is required to obtain the weight of each 
edge, and then determine whether the weight of an edge exceeds 1,000,000 by iterating through each edge in the cycle.
Result_Description:
filteredges is a list that stores the filtered edges. Each edge is represented as a dictionary composed of source, target, and weight.
You can iterate through filteredges to output the final results.
(The number of tokens in the result is less than the limit of the context window, and the input to the large language model is in the form of text.)

Thought:
Through the first three steps, we have successfully extracted the largest cycle in the graph and filtered out the edges with weights exceeding 1,000,000, 
which are as follows:[{"source": 249, "target": 963, "weight": 6393000}, {"source": 1, "target": 92, "weight": 8975610}, {"source": 72, "target": 647, "weight": 
2402500}, {"source": 31, "target": 96, "weight": 1297921}, {"source": 96, "target": 0, "weight": 2553000}]
Action:

<API>Finish->answer</API>
Answer: After analyzing the cycles in the given transfer graph, we identified the largest cycle and filtered it based on weight. The results are as follows:
The list of edges with weights exceeding 1,000,000 is [{"source": 249, "target": 963, "weight": 6393000}, {"source": 1, "target": 92, "weight": 8975610}, 
{"source": 72, "target": 647, "weight": 2402500}, {"source": 31, "target": 96, "weight": 1297921}, {"source": 96, "target": 0, "weight": 2553000}]。

Figure 6: A typical case of GraphChain on Financial Networks.

We present a case study in Figure 6 involving a transmission network from the Elliptic Dataset,494

comprising 11,896 nodes and 31,054 edges—exceeding the context processing capabilities of current495

LLMs. GraphChain demonstrates robust capability to systematically handle this task through a496

series of tool invocations. The Progressive Graph Distillation mechanism enables iterative reduction497

of information complexity, focusing on the most salient features.498

Due to context window limitations, we store intermediate processing results in memory rather than499

directly inputting them into the LLM. The model outputs detailed descriptions of current processing500

results and their usage methods to facilitate further analysis. Only when intermediate results’ token501

count falls below the maximum context window limit are they directly input into the LLM, maximizing502

the model’s advantages while minimizing limitations.503
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C Details of Experimental Setup504

We provide comprehensive details on our experimental setup to ensure reproducibility. All experi-505

ments were conducted on 2 NVIDIA A800 80GB GPUs, using LoRA-based fine-tuning (rank r=16,506

alpha=32) on the Qwen2.5-7B-instruction model.507

C.1 Training Configuration508

Our training pipeline consisted of three main stages:509

• Supervised Fine-Tuning (SFT) Stage: We used a learning rate of 5× 10−5 with 4% warmup and510

a cosine scheduler for 8 epochs. This initial phase established the model’s ability to follow graph511

reasoning instructions.512

• Reinforcement Learning (RL) Stage: We implemented Proximal Policy Optimization (PPO) with513

step-level rewards, departing from traditional RLHF approaches that apply rewards solely to the514

final step. Our implementation used:515

– Learning rate: 1× 10−5516

– Batch size: 8517

– Initial KL coefficient: 0.3518

– Loss coefficient (β): 0.15519

– GAE parameter (λ): 0.95520

– Discount factor (γ): 0.99521

• Test-Time Adaptation Stage: For the structure-aware adaptation mechanism, we configured:522

– Learning rate: 0.01523

– Batch size: 10524

C.2 Inference Settings525

During inference, we used a temperature of 0.7 and top-p value of 1.0, optimizing for a balance526

between diversity and coherence in the generated tool chains.527

Complete configuration files and scripts are available in our code repository to facilitate reproduction528

of our results.529

D Baseline Implementation530

To comprehensively evaluate GraphChain, we implemented several state-of-the-art graph reasoning531

baselines spanning both Text-Instruction and Tool-Instruction paradigms. Table 4 summarizes these532

baseline methods and their corresponding backbone models.533

D.1 Text-Instruction Methods534

For closed-source LLMs (Claude-series, GPT-series, and GLM4-0520), we employed two-535

shot Chain-of-Thought (CoT) prompting to stimulate structured reasoning. Table 5 illustrates our536

prompting approach with an example.537

For specialized graph reasoning methods, we reproduced:538

• GraphWiz: We reimplemented using the Llama2-13B backbone with a learning rate of 2e-5 for 3539

epochs and maximum sequence length of 2048. During inference, temperature was set to 0 with540

maximum output tokens of 1024 to ensure stable generation.541

• NLGraph: Following the original implementation, we provided 4 exemplars for connectivity and542

cycle tasks, and 5 exemplars for other tasks due to context size limitations. For fair comparison, we543

used the standardized test set across all experiments.544
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Table 4: Comparison of baseline methods and their corresponding models for graph reasoning.

LLM Type Open Source Method Base Model

Text Instruction

✗ Two-shot Claude-series [Anthropic, 2024]
✗ Two-shot GPT-series [OpenAI, 2023]

✓ NLGraph [Wang et al., 2023a] GPT-4-turbo
✓ GraphWiz [Chen et al., 2024a] Llama2-13B

Tool Instruction

✗ Function Calling GPT-3.5-turbo [OpenAI, 2023]
✗ Function Calling GPT-4o [OpenAI, 2023]
✗ Function Calling GLM4-0520 [GLM, 2024]

✓ Graph-ToolFormer [Zhang, 2023a] Llama3-8B
✓ GraphForge [Wang et al., 2024c] Llama3-8B

Table 5: Example of two-shot prompting used for text-instruction baselines.

Prompt Template
You are an AI assistant specialized in graph reasoning. For each problem, first extract the graph structure,
then solve the task step by step.
Example 1:
Input: Given a weighted directed graph with edges: [(0, 2, {’weight’: 3}), (0, 3,
{’weight’: 7}), (1, 0, {’weight’: 2}), (1, 4, {’weight’: 8}), (2, 4,
{’weight’: 1}), (3, 4, {’weight’: 3})]. Find the shortest path from node 1 to
node 4.
Reasoning: First, I’ll extract the graph structure.
Graph: [(0, 2, {’weight’: 3}), (0, 3, {’weight’: 7}), (1, 0,
{’weight’: 2}), (1, 4, {’weight’: 8}), (2, 4, {’weight’: 1}), (3,
4, {’weight’: 3})]
Now I’ll find the shortest path from node 1 to node 4.

• Direct path: 1 → 4 with weight 8
• Indirect path: 1 → 0 → 2 → 4 with weight 2 + 3 + 1 = 6
• Indirect path: 1 → 0 → 3 → 4 with weight 2 + 7 + 3 = 12

The shortest path is 1 → 0 → 2 → 4 with total weight 6.
Answer: The shortest path from node 1 to node 4 is 1 → 0 → 2 → 4 with total weight 6.
Example 2:
Input: Given an undirected graph with edges: [(0, 1), (0, 3), (1, 2), (1, 4), (2,
5), (3, 4), (4, 5)]. Determine if there exists a cycle in this graph.
Reasoning: Let me extract the graph structure.
Graph: [(0, 1), (0, 3), (1, 2), (1, 4), (2, 5), (3, 4), (4, 5)]
To check for cycles, I’ll trace possible paths:
Starting from node 0: 0 → 1 → 2 → 5 → 4 → 3 → 0
This forms a cycle: 0 → 1 → 2 → 5 → 4 → 3 → 0
Answer: Yes, there exists a cycle in the graph.
Now solve the following problem:
Input: [Problem description]

D.2 Tool-Instruction Methods545

We implemented tool-augmented approaches including:546

• Graph-ToolFormer: We reimplemented this approach based on the Llama3-8B model using547

LoRA (rank r=16, alpha=32) with a learning rate of 1e-5 and weight decay of 1e-2 for 3 epochs.548

For generation, we used beam search with 5 beams, top-k of 5, top-p of 0.95, and temperature of549

0.7.550
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• GraphForge: We implemented based on Llama3-8B using LoRA (rank r=16, alpha=32) with a551

learning rate of 5e-5 for 5 epochs. Inference settings matched our GraphChain configuration with552

temperature of 0.7 and top-p of 1.0.553

• Function Calling: For closed-source models supporting function calling (GPT-3.5-turbo, GPT-4o,554

and GLM4-0520), we implemented the same graph processing functions used in GraphChain as555

external API tools, allowing these models to leverage structured tool invocation capabilities during556

inference.557

All baseline implementations were executed using the same hardware setup as GraphChain: two558

NVIDIA A800 GPUs for fine-tuning and inference with open-source models. For closed-source559

models, we utilized their respective official API interfaces. To ensure fair comparison across all560

methods, we partitioned original graphs into subgraphs with fewer than 100 nodes for evaluation,561

while separately testing GraphChain’s scalability on full-sized graphs with up to 200,000 nodes in562

Section 5.4.563

E Graph Analysis Tool Library564

To construct an effective graph question-answering system, we selected 45 functions from the565

NetworkX library through a systematic review of graph analysis tasks prevalent in academic research566

and practical applications. Table 6 shows the complete list of selected functions. The selection567

process prioritized coverage of eight core dimensions of graph analytics:568

• Basic Graph Properties – Functions providing structural metadata, including node/edge569

counts, degree distributions, and adjacency queries.570

• Centrality Metrics – Measures for node influence, spanning degree centrality to advanced571

methods (eigenvector, percolation, and Katz centrality).572

• Connectivity and Components – Tools for evaluating graph robustness, such as articulation573

points, bridges, and strongly/weakly connected components.574

• Shortest Paths and Distances – Algorithms for unweighted and weighted paths, critical for575

routing and diffusion modeling.576

• Clustering and Communities – Modular structure analysis via clustering coefficients and577

detection algorithms (e.g., label propagation, Louvain).578

• Flow Algorithms – Maximum flow and minimum cut computations using multiple methodolo-579

gies (e.g., Edmonds-Karp).580

• Cycle Analysis – Feedback loop identification in directed and undirected graphs.581

• Topological Sorting – Dependency resolution for directed acyclic graphs (DAGs).582

While not exhaustive, this set was carefully selected to balance analytical breadth and computational583

efficiency, ensuring system responsiveness and interpretability. Future work may integrate domain-584

specific or higher-order analytics, but this toolset is representative and sufficient for general-purpose585

graph analysis.586

F Data Construction587

This section details the creation of datasets used for training and evaluating GraphChain, including588

fine-tuning data and graph datasets across five real-world scenarios.589

F.1 Fine-tuning Dataset590

We constructed a comprehensive and robust dataset for fine-tuning GraphChain through a systematic,591

multi-faceted approach:592

F.1.1 SFT Dataset Construction593

We curated 45 commonly used APIs from the NetworkX library based on relevance and usage594

frequency in graph-related tasks. To ensure diverse instruction coverage, we employed ChatGPT to595

17



Table 6: NetworkX Functions Categorized by Graph Analysis Task
Category NetworkX Functions
Basic Graph Properties G.number_of_nodes(), G.number_of_edges(),

G.has_node(n), G.has_edge(u, v), G.degree(),
G.in_degree(), G.out_degree(),
G.get_edge_data(u, v)

Centrality Metrics nx.betweenness_centrality(),
nx.closeness_centrality(),
nx.degree_centrality(),
nx.eigenvector_centrality(),
nx.harmonic_centrality(),
nx.percolation_centrality(),
nx.second_order_centrality(),
nx.subgraph_centrality()

Connectivity and Compo-
nents

nx.strongly_connected_components(),
nx.weakly_connected_components(),
nx.articulation_points(), nx.bridges(),
nx.k_edge_components(),
nx.k_node_components(),
nx.node_connectivity(),
nx.edge_connectivity()

Shortest Paths and Distances nx.all_pairs_shortest_path(),
nx.all_pairs_shortest_path_length(),
nx.dijkstra_path(),
nx.dijkstra_path_length(),
nx.floyd_warshall()

Clustering and Communities nx.average_clustering(), nx.clustering(),
nx.transitivity(), nx.triangles(),
nx.label_propagation_communities(),
nx.louvain_communities()

Flow Algorithms nx.boykov_kolmogorov_min_cut(),
nx.dinic_min_cut(),
nx.edmonds_karp_min_cut(), nx.minimum_cut()

Cycle Detection nx.simple_cycles(), nx.cycle_basis()

Topological Sorting nx.topological_sort(),
nx.is_directed_acyclic_graph(),
nx.all_topological_sorts(),
nx.topological_generations()

generate various instructions tailored to these APIs. For each iteration, we randomly sampled APIs and596

prompted ChatGPT to reverse-engineer instructions centered around them, ensuring comprehensive597

coverage across the API set.598

To enhance practical relevance, human experts crafted three exemplar instructions for each subgroup599

within five distinct real-world graph scenarios. These expertly designed prompts served as high-600

quality references, grounding the dataset in realistic use cases.601

Our structured prompting strategy guided ChatGPT to produce outputs in a standardized format:602

{Thought: ...Action: ...}

Each action explicitly invoked an API with required parameters (e.g., G.get_edge_data(8, 0,603

default=None)). The outputs were fed into a code generator to produce executable code, which604

was then executed to obtain results formatted as:605

{"error": "...", "response": "..."}
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Table 7: The prompt template for constructing the SFT dataset.

Category Description
Dataset Name Citation-Network.txt

Dataset Type MultiDirected Graph

Dataset Con-
tent

The citation data between research papers. Directed edge A to B means that
paper A cites paper B. The graph construction operation is:
G = nx.MultiDiGraph(), G.add_edge(paper1, paper2),
where paper1 and paper2 are research papers. String type is used to
store nodes.

Task Generate a complex graph problem and its step-by-step solution process.

Output Type JSON

Output Rules (1) The output must be a JSON containing a series of "from" and "value" as
shown in the example, using English.
(2) Provide the user problem in "value" under "user", generate the re-
sponse in "value" under "assistant", and generate API return results in
"value" under "function".
(3) The output can have only this JSON data with no additional informa-
tion.
(4) Follow the format of the example but exclude the key name "exam-
ple".

Special Atten-
tion

In the "assistant" response, provide detailed thought processes without code,
using NetworkX methods. Mark called APIs with <API>...</API>, e.g.,
<API>nx.dfs_edges(graph, source=10)</API>. Format outputs as:
Thought: ... Action: <API>...</API>
When <API>...</API> is encountered, provide "function" with fabri-
cated API results:
{"error": "", "response": ""}
Continue this process until final result. Final "assistant" format should
be:
Thought: ... Action: <API>Finish->answer</API>
Answer: ...
Or:
Thought: ...
Action: <API>Finish->give_up_and_restart</API>

Design Re-
quirement

Design Q&A around the {API_NUM} APIs {API_NAME}. Focus on collaboration
between APIs, where later APIs utilize results from previous ones for further
reasoning.

These results were appended to the input for subsequent steps, creating a coherent action sequence.606

We introduced two auxiliary functions: Finish->answer (signaling successful task completion) and607

Finish->giveup_and_restart (allowing model reset and retry in cases of persistent errors).608

Through this pipeline, we generated 9,986 (instruction, solution path) pairs that encapsulate a wide609

range of API-driven tasks reflecting the complexity of real-world graph-based problem-solving.610

Table 8 shows an example from our SFT dataset.611

F.1.2 RL Dataset Construction612

For the reinforcement learning phase, we constructed a dataset with reward values for each step. We613

used GPT-4 to score each step based on three dimensions:614

• API Correctness: Whether the tool invocation in the current step is valid615

• Thought and API Effectiveness: The relevance of the tool selection to solving the query616

• Graph Distillation: Whether the tool reduces the information content of the graph data617
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Table 8: Example of SFT data with step-by-step reasoning and API calls.

From Value
User How to identify the neighbor nodes of node 15 and analyze the fund flow

between these neighbor nodes? Begin!

Assistant Thought: To identify the neighbor nodes of node 15 and analyze fund
flow between them, we need to proceed step by step. First, obtain all
direct neighbor nodes of node 15 and transaction information. Then
analyze fund flow between these neighbors.
Let’s obtain neighbor nodes and transaction information using
<API>graph.out_edges(15, data=True)</API> and
<API>graph.in_edges(15, data=True)</API> to get all outgoing
and incoming edge information.
Action: <API>graph.out_edges(15, data=True)</API>

Function {"error": "", "response": "Direct outgoing
transaction information of node 15:
- (15, 16, {’weight’: 400.0, ’date’: ’2022-06-10’})
- (15, 17, {’weight’: 200.0, ’date’: ’2022-07-01’})"}

Assistant Thought: Continue by obtaining incoming transaction information.
Action: <API>graph.in_edges(15, data=True)</API>

Function {"error": "", "response": "Direct incoming
information for node 15:
- (10, 15, {’weight’: 880.0, ’date’: ’2022-05-20’})"}

Assistant Thought: Now we’ve identified neighbor nodes of 15 are 10, 16, and 17.
Next, analyze fund flow between these neighbors using
<API>graph.subgraph([10, 16,
17]).edges(data=True)</API>.
Action: <API>graph.subgraph([10, 16,
17]).edges(data=True)</API>

Function {"error": "", "response": "(10, 16, {’weight’:
300.0, ’date’: ’2022-06-05’})
- (10, 17, {’weight’: 100.0, ’date’: ’2022-06-15’})
- (16, 17, {’weight’: 50.0, ’date’: ’2022-07-10’})"}

Assistant Thought: Based on this information, we can draw conclusions: Node 10
transferred 880 yuan to node 15, 300 yuan to node 16, and 100 yuan to
node 17. There is also fund flow between nodes 16 and 17, with node 16
transferring 50 yuan to node 17.
Action: <API>Finish->answer</API>
Answer: Node 10 not only transferred 880 yuan to node 15, but also
transferred 300 yuan to node 16 and 100 yuan to node 17. There is also
fund flow between nodes 16 and 17, specifically, node 16 transferred 50
yuan to node 17.

Table 9 shows the prompt template used for RL data construction.618

Table 10 shows two examples from our RL dataset with corresponding evaluation scores.619

F.2 Graph Dataset620

We extracted subgraphs from existing real-world datasets to construct graph datasets for five scenarios,621

each corresponding to different graph types:622

• Financial Networks: From the Elliptic dataset, containing Bitcoin transaction graphs623

• Chemical Molecules: From the QM9 dataset, including molecular structure graphs where atoms624

are nodes and chemical bonds are edges625
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Table 9: The prompt template for constructing the RL dataset.

Category Description
Dataset Name cash_flow_graph.gexf

Dataset Type MultiDirected graph with weights and dates

Dataset Con-
tent

The fund transfer data of a specific group. Directed edge A→B means A
transferred funds to B. Graph construction:
G = nx.MultiDiGraph(), G.add_edge(sender, receiver,
weight=amount, date=transfer_date),
where "sender" and "receiver" are the transfer participants, "amount" is
the money amount, and "transfer_date" is the date. Integer type is used
for nodes.

Task Judge the reasonableness of thought and API names based on three dimensions:
(1) API Correctness: Whether the method exists in networkX, accepts
the specified parameters, and matches the dataset type.
(2) Thought and API Effectiveness: How directly and effectively this
step contributes to solving the user question.
(3) Graph Distillation: Whether the current thought and API can reduce
information content or narrow search scope.

Output Type json

Output Rules (1) Output must be json data containing "apiResult" as shown in the example.
(2) Output can have only this json data with no additional information.

Special Atten-
tion

Output in "apiResult" should follow:

{"api_Correctness": "", "thoughtAndApi_Effectiveness":
"", "Graph_Distillation": ""}

• Social Networks: From the Facebook and Twitter datasets626

• Citation Graphs: From the Cora, CiteSeer, and PubMed datasets627

• Traffic Networks: From the METR-LA dataset628

For simplicity, we simplified the graph data as shown in Figure 7. Following Wang et al. [2024c], we629

prepared two versions of each graph to accommodate different baselines:630

• For text-instruction baselines, we restricted inputs to no more than 30 nodes and 300 edges due to631

context length limitations632

• For tool-instruction baselines, we limited inputs to no more than 100 nodes and 1000 edges633

This approach ensures fair comparison across all methods while allowing us to evaluate GraphChain’s634

scalability advantages with full-sized graphs in our main experiments.635

G Complexity Analysis of Structure-aware Test-Time Adaptation636

This section analyzes the computational complexity of our Structure-aware Test-Time Adaptation637

(STTA) mechanism.638

G.1 Graph Structural Fingerprinting639

For a graphGwithN nodes andE edges, computing theM smallest singular values of the normalized640

Laplacian has:641

• Time complexity: O(E ·M · Titer), where Titer is the number of iterations in the iterative642

SVD algorithm643
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Table 10: Examples from the RL dataset with evaluation scores.

Category User Question Thought and API
Input Please analyze whether there is a

fund circulation flow in the graph,
and identify all nodes involved in
the circulation flow. Additionally,
please calculate the maximum
amount of funds involved in these
circulation paths. Begin!

We obtained the minimum cut of the maximum
fund flow from node 1 to node 3 and its
corresponding maximum flow value X. This
means that, after considering all possible flow
paths, the maximum fund transfer amount on
the path from node 1 to node 3 is X.
Additionally, we obtained the two sets that
constitute the minimum cut, which helps us
understand which nodes are involved in this
maximum fund transfer process. The next step
is to list the names of all nodes involved in the
circulation flow to display directly to the user.
API: G.nodes()

Output API Correctness: 0.8, Thought
and API Effectiveness: 0.9,
Graph Distillation: 0.0

Input Please analyze whether there is a
fund circulation flow in the graph,
and identify all nodes involved in
the circulation flow. Additionally,
please calculate the maximum
amount of funds involved in these
circulation paths. Begin!

To complete this task, we need to proceed step
by step. First, we need to determine whether
there is a fund circulation flow in the graph,
which can be achieved by calling
<API>nx.find_cycle(G)</API> to return a
list of cycle edges if a cycle exists. Next, we
need to identify all nodes involved in the
circulation flow.
<API>nx.simple_cycles(G)</API> can be
used to find all simple cycles (i.e., cycles that do
not repeat any node) in the graph. Finally, for
each identified circulation path, we need to
calculate its maximum fund amount, which can
be done by traversing each edge in the cycle and
accumulating their weights.
API: nx.find_cycle(G)

Output API Correctness: 0.9, Thought
and API Effectiveness: 0.95,
Graph Distillation: 1.0

• Space complexity: O(N + E +NM)644

We employ iterative methods (Lanczos algorithm or power iterations) instead of full SVD to efficiently645

compute only the needed singular values. Since M ≪ N (typically M = 10 to 50), this computation646

remains efficient even for large graphs.647

G.2 Structure-Conditioned Prompt Generation648

The adapter network Aψ that maps the structural fingerprint to soft prompts has:649

• Time complexity: O(M ·H +H · Lp · demb)650

• Space complexity: O(M ·H +H · Lp · demb)651

Where H is the hidden dimension, Lp is the prompt length, and demb is the embedding dimension.652

This adapter is extremely lightweight (0.01%-0.1% of LLM parameters).653

G.3 Self-Supervised Adaptation654

The REINFORCE-based adaptation using K auxiliary queries with R rollouts per query has:655
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descriptio

Financial Network
n

Type:MultiDirected graph with weights and dates
Content:The fund transfer data of a specific group of people. Directed edge A->B means that A has transferred funds to B.
The graph construction operation is:
G = nx.MultiDiGraph(

Name:Financial_Network.txt

)
G.add_edge(sender, receiver, weight=amount, date=transfer_date)
where "sender" and "receiver" are the sender and receiver of the transfer, "amount" is the amount of money, and "transfer_date" is the date of the transfer.The integer
type is used to store nodes when constructing the graph.

Social Network
description

Traffic Network
description

Citation Graph
description

Chemical Molecule
description

Name:Social-Network.txt
Type:Undirected graph with weights
Content:The friendship data of a social network. Undirected edge A-B means that A and B are friends.
The graph construction operation is:
G = nx.Graph()
G.add_edge(user1, user2, weight=interaction_score)
where "user1" and "user2" are users, and "interaction_score" is the interaction score between them. The string type is used to store nodes when constructing the graph.

Name:Traffic_Network.txt
Type:Directed graph with weights
Content:The transportation data between cities. Directed edge A->B means that there is a direct route from city A to city B.
The graph construction operation is:
G ==nx.DiGraph()
G.add_edge(city1, city2, weight=distance)
where "city1" and "city2" are cities, and "distance" is the distance between them. The string type is used to store nodes when constructing the graph.

Name:Citation_Graph.txt
Type:MultiDirected graph
Content:The citation data between research papers. Directed edge A->B means that paper A cites paper B.
The graph construction operation is:
G = nx.MultiDiGraph()
G.add_edge(paper1, paper2)
where "paper1" and "paper2" are research papers. The string type is used to store nodes when constructing the graph.

Name:Chemical_Molecule.txt
Type:MultiUndirected graph with weights
Content:The chemical compound data. Undirected edge A-B means that there is a bond between atom A and atom B.
The graph construction operation is:
G = nx.MultiGraph()
G.add_edge(atom1, atom2, weight=bond_strength)
where "atom1" and "atom2" are atoms, and "bond_strength" is the strength of the bond between them. The string type is used to store nodes when constructing the
graph.

Figure 7: Detailed Description of the Graph Datasets for the Five Scenarios.

• Time complexity: O(K ·R · N̄ · CLLM +K ·R · N̄ · CKL)656

• Space complexity: O(K ·R · N̄ + |ψ|)657

Where N̄ is the average chain length, CLLM is the cost of an LLM forward pass, CKL is the cost of658

computing KL divergence, and |ψ| is the parameter count of the adapter.659

G.4 Overall Efficiency660

The total computational cost can be summarized as:661

Ctotal = O(E ·M · Titer) +O(K ·R · N̄ · CLLM ) +O(Tquery · N̄query · CLLM ) (13)

Our approach is efficient because: (1) graph fingerprinting is performed only once per graph; (2)662

adaptation requires few rollouts (typically K = 5, R = 3); and (3) only the small adapter network663

needs updating.664
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H Broader Impact665

GraphChain’s ability to process large-scale graphs efficiently could significantly enhance data analysis666

capabilities in critical domains such as financial fraud detection, healthcare networks, and social net-667

work analysis. By enabling more effective reasoning over complex interconnected data, GraphChain668

could help identify suspicious transaction patterns, improve epidemiological network analysis, and669

better understand information propagation in social networks. The framework’s adaptability across670

diverse graph structures makes it particularly valuable for interdisciplinary research and applications671

where domain experts need to analyze graph data without specialized technical knowledge. Moreover,672

the reduced computational requirements of our approach compared to retraining models for each673

new graph domain could lead to more environmentally sustainable AI deployments by decreasing674

the energy consumption associated with large-scale model training. These advancements contribute675

to more accessible, efficient, and effective graph analytics tools that can address various societal676

challenges.677
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NeurIPS Paper Checklist678

1. Claims679

Question: Do the main claims made in the abstract and introduction accurately reflect the680

paper’s contributions and scope?681

Answer: [Yes]682

Justification: Our abstract and introduction clearly claim our task (scope), contributions and683

solutions.684

Guidelines:685

• The answer NA means that the abstract and introduction do not include the claims686

made in the paper.687

• The abstract and/or introduction should clearly state the claims made, including the688

contributions made in the paper and important assumptions and limitations. A No or689

NA answer to this question will not be perceived well by the reviewers.690

• The claims made should match theoretical and experimental results, and reflect how691

much the results can be expected to generalize to other settings.692

• It is fine to include aspirational goals as motivation as long as it is clear that these goals693

are not attained by the paper.694

2. Limitations695

Question: Does the paper discuss the limitations of the work performed by the authors?696

Answer: [Yes]697

Justification: We discuss the limitation in Conclusion.698

Guidelines:699

• The answer NA means that the paper has no limitation while the answer No means that700

the paper has limitations, but those are not discussed in the paper.701

• The authors are encouraged to create a separate "Limitations" section in their paper.702

• The paper should point out any strong assumptions and how robust the results are to703

violations of these assumptions (e.g., independence assumptions, noiseless settings,704

model well-specification, asymptotic approximations only holding locally). The authors705

should reflect on how these assumptions might be violated in practice and what the706

implications would be.707

• The authors should reflect on the scope of the claims made, e.g., if the approach was708

only tested on a few datasets or with a few runs. In general, empirical results often709

depend on implicit assumptions, which should be articulated.710

• The authors should reflect on the factors that influence the performance of the approach.711

For example, a facial recognition algorithm may perform poorly when image resolution712

is low or images are taken in low lighting. Or a speech-to-text system might not be713

used reliably to provide closed captions for online lectures because it fails to handle714

technical jargon.715

• The authors should discuss the computational efficiency of the proposed algorithms716

and how they scale with dataset size.717

• If applicable, the authors should discuss possible limitations of their approach to718

address problems of privacy and fairness.719

• While the authors might fear that complete honesty about limitations might be used by720

reviewers as grounds for rejection, a worse outcome might be that reviewers discover721

limitations that aren’t acknowledged in the paper. The authors should use their best722

judgment and recognize that individual actions in favor of transparency play an impor-723

tant role in developing norms that preserve the integrity of the community. Reviewers724

will be specifically instructed to not penalize honesty concerning limitations.725

3. Theory assumptions and proofs726

Question: For each theoretical result, does the paper provide the full set of assumptions and727

a complete (and correct) proof?728

Answer: [Yes]729
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Justification: We provide all the proof in Appendix A.730

Guidelines:731

• The answer NA means that the paper does not include theoretical results.732

• All the theorems, formulas, and proofs in the paper should be numbered and cross-733

referenced.734

• All assumptions should be clearly stated or referenced in the statement of any theorems.735

• The proofs can either appear in the main paper or the supplemental material, but if736

they appear in the supplemental material, the authors are encouraged to provide a short737

proof sketch to provide intuition.738

• Inversely, any informal proof provided in the core of the paper should be complemented739

by formal proofs provided in appendix or supplemental material.740

• Theorems and Lemmas that the proof relies upon should be properly referenced.741

4. Experimental result reproducibility742

Question: Does the paper fully disclose all the information needed to reproduce the main ex-743

perimental results of the paper to the extent that it affects the main claims and/or conclusions744

of the paper (regardless of whether the code and data are provided or not)?745

Answer: [Yes]746

Justification: We provide our code in the supplementary material.747

Guidelines:748

• The answer NA means that the paper does not include experiments.749

• If the paper includes experiments, a No answer to this question will not be perceived750

well by the reviewers: Making the paper reproducible is important, regardless of751

whether the code and data are provided or not.752

• If the contribution is a dataset and/or model, the authors should describe the steps taken753

to make their results reproducible or verifiable.754

• Depending on the contribution, reproducibility can be accomplished in various ways.755

For example, if the contribution is a novel architecture, describing the architecture fully756

might suffice, or if the contribution is a specific model and empirical evaluation, it may757

be necessary to either make it possible for others to replicate the model with the same758

dataset, or provide access to the model. In general. releasing code and data is often759

one good way to accomplish this, but reproducibility can also be provided via detailed760

instructions for how to replicate the results, access to a hosted model (e.g., in the case761

of a large language model), releasing of a model checkpoint, or other means that are762

appropriate to the research performed.763

• While NeurIPS does not require releasing code, the conference does require all submis-764

sions to provide some reasonable avenue for reproducibility, which may depend on the765

nature of the contribution. For example766

(a) If the contribution is primarily a new algorithm, the paper should make it clear how767

to reproduce that algorithm.768

(b) If the contribution is primarily a new model architecture, the paper should describe769

the architecture clearly and fully.770

(c) If the contribution is a new model (e.g., a large language model), then there should771

either be a way to access this model for reproducing the results or a way to reproduce772

the model (e.g., with an open-source dataset or instructions for how to construct773

the dataset).774

(d) We recognize that reproducibility may be tricky in some cases, in which case775

authors are welcome to describe the particular way they provide for reproducibility.776

In the case of closed-source models, it may be that access to the model is limited in777

some way (e.g., to registered users), but it should be possible for other researchers778

to have some path to reproducing or verifying the results.779

5. Open access to data and code780

Question: Does the paper provide open access to the data and code, with sufficient instruc-781

tions to faithfully reproduce the main experimental results, as described in supplemental782

material?783
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Answer: [Yes]784

Justification: We provide our code in the supplementary material. And we provide a github785

repository containing the code in https://github.com/GraphChain651/GraphChain.786

Guidelines:787

• The answer NA means that paper does not include experiments requiring code.788

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/789

public/guides/CodeSubmissionPolicy) for more details.790

• While we encourage the release of code and data, we understand that this might not be791

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not792

including code, unless this is central to the contribution (e.g., for a new open-source793

benchmark).794

• The instructions should contain the exact command and environment needed to run to795

reproduce the results. See the NeurIPS code and data submission guidelines (https:796

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.797

• The authors should provide instructions on data access and preparation, including how798

to access the raw data, preprocessed data, intermediate data, and generated data, etc.799

• The authors should provide scripts to reproduce all experimental results for the new800

proposed method and baselines. If only a subset of experiments are reproducible, they801

should state which ones are omitted from the script and why.802

• At submission time, to preserve anonymity, the authors should release anonymized803

versions (if applicable).804

• Providing as much information as possible in supplemental material (appended to the805

paper) is recommended, but including URLs to data and code is permitted.806

6. Experimental setting/details807

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-808

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the809

results?810

Answer: [Yes]811

Justification: In the Appendix C and F.812

Guidelines:813

• The answer NA means that the paper does not include experiments.814

• The experimental setting should be presented in the core of the paper to a level of detail815

that is necessary to appreciate the results and make sense of them.816

• The full details can be provided either with the code, in appendix, or as supplemental817

material.818

7. Experiment statistical significance819

Question: Does the paper report error bars suitably and correctly defined or other appropriate820

information about the statistical significance of the experiments?821

Answer: [Yes]822

Justification: We conduct two-sample t-tests, and p-value < 0.05 indicates that the improve-823

ments are statistically significant.824

Guidelines:825

• The answer NA means that the paper does not include experiments.826

• The authors should answer "Yes" if the results are accompanied by error bars, confi-827

dence intervals, or statistical significance tests, at least for the experiments that support828

the main claims of the paper.829

• The factors of variability that the error bars are capturing should be clearly stated (for830

example, train/test split, initialization, random drawing of some parameter, or overall831

run with given experimental conditions).832

• The method for calculating the error bars should be explained (closed form formula,833

call to a library function, bootstrap, etc.)834

• The assumptions made should be given (e.g., Normally distributed errors).835
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• It should be clear whether the error bar is the standard deviation or the standard error836

of the mean.837

• It is OK to report 1-sigma error bars, but one should state it. The authors should838

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis839

of Normality of errors is not verified.840

• For asymmetric distributions, the authors should be careful not to show in tables or841

figures symmetric error bars that would yield results that are out of range (e.g. negative842

error rates).843

• If error bars are reported in tables or plots, The authors should explain in the text how844

they were calculated and reference the corresponding figures or tables in the text.845

8. Experiments compute resources846

Question: For each experiment, does the paper provide sufficient information on the com-847

puter resources (type of compute workers, memory, time of execution) needed to reproduce848

the experiments?849

Answer: [Yes]850

Justification: In the Appendix C.851

Guidelines:852

• The answer NA means that the paper does not include experiments.853

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,854

or cloud provider, including relevant memory and storage.855

• The paper should provide the amount of compute required for each of the individual856

experimental runs as well as estimate the total compute.857

• The paper should disclose whether the full research project required more compute858

than the experiments reported in the paper (e.g., preliminary or failed experiments that859

didn’t make it into the paper).860

9. Code of ethics861

Question: Does the research conducted in the paper conform, in every respect, with the862

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?863

Answer: [Yes]864

Justification: This research conforms, in every respect, with the NeurIPS Code of Ethics.865

Guidelines:866

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.867

• If the authors answer No, they should explain the special circumstances that require a868

deviation from the Code of Ethics.869

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-870

eration due to laws or regulations in their jurisdiction).871

10. Broader impacts872

Question: Does the paper discuss both potential positive societal impacts and negative873

societal impacts of the work performed?874

Answer: [Yes]875

Justification: In appendix H.876

Guidelines:877

• The answer NA means that there is no societal impact of the work performed.878

• If the authors answer NA or No, they should explain why their work has no societal879

impact or why the paper does not address societal impact.880

• Examples of negative societal impacts include potential malicious or unintended uses881

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations882

(e.g., deployment of technologies that could make decisions that unfairly impact specific883

groups), privacy considerations, and security considerations.884
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• The conference expects that many papers will be foundational research and not tied885

to particular applications, let alone deployments. However, if there is a direct path to886

any negative applications, the authors should point it out. For example, it is legitimate887

to point out that an improvement in the quality of generative models could be used to888

generate deepfakes for disinformation. On the other hand, it is not needed to point out889

that a generic algorithm for optimizing neural networks could enable people to train890

models that generate Deepfakes faster.891

• The authors should consider possible harms that could arise when the technology is892

being used as intended and functioning correctly, harms that could arise when the893

technology is being used as intended but gives incorrect results, and harms following894

from (intentional or unintentional) misuse of the technology.895

• If there are negative societal impacts, the authors could also discuss possible mitigation896

strategies (e.g., gated release of models, providing defenses in addition to attacks,897

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from898

feedback over time, improving the efficiency and accessibility of ML).899

11. Safeguards900

Question: Does the paper describe safeguards that have been put in place for responsible901

release of data or models that have a high risk for misuse (e.g., pretrained language models,902

image generators, or scraped datasets)?903

Answer: [NA]904

Justification: Not Applicable.905

Guidelines:906

• The answer NA means that the paper poses no such risks.907

• Released models that have a high risk for misuse or dual-use should be released with908

necessary safeguards to allow for controlled use of the model, for example by requiring909

that users adhere to usage guidelines or restrictions to access the model or implementing910

safety filters.911

• Datasets that have been scraped from the Internet could pose safety risks. The authors912

should describe how they avoided releasing unsafe images.913

• We recognize that providing effective safeguards is challenging, and many papers do914

not require this, but we encourage authors to take this into account and make a best915

faith effort.916

12. Licenses for existing assets917

Question: Are the creators or original owners of assets (e.g., code, data, models), used in918

the paper, properly credited and are the license and terms of use explicitly mentioned and919

properly respected?920

Answer: [Yes]921

Justification: We cite the original papers or website links about the dataset and open-source922

codes.923

Guidelines:924

• The answer NA means that the paper does not use existing assets.925

• The authors should cite the original paper that produced the code package or dataset.926

• The authors should state which version of the asset is used and, if possible, include a927

URL.928

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.929

• For scraped data from a particular source (e.g., website), the copyright and terms of930

service of that source should be provided.931

• If assets are released, the license, copyright information, and terms of use in the932

package should be provided. For popular datasets, paperswithcode.com/datasets933

has curated licenses for some datasets. Their licensing guide can help determine the934

license of a dataset.935

• For existing datasets that are re-packaged, both the original license and the license of936

the derived asset (if it has changed) should be provided.937
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• If this information is not available online, the authors are encouraged to reach out to938

the asset’s creators.939

13. New assets940

Question: Are new assets introduced in the paper well documented and is the documentation941

provided alongside the assets?942

Answer: [NA]943

Justification: Not Applicable.944

Guidelines:945

• The answer NA means that the paper does not release new assets.946

• Researchers should communicate the details of the dataset/code/model as part of their947

submissions via structured templates. This includes details about training, license,948

limitations, etc.949

• The paper should discuss whether and how consent was obtained from people whose950

asset is used.951

• At submission time, remember to anonymize your assets (if applicable). You can either952

create an anonymized URL or include an anonymized zip file.953

14. Crowdsourcing and research with human subjects954

Question: For crowdsourcing experiments and research with human subjects, does the paper955

include the full text of instructions given to participants and screenshots, if applicable, as956

well as details about compensation (if any)?957

Answer: [NA]958

Justification: Not Applicable.959

Guidelines:960

• The answer NA means that the paper does not involve crowdsourcing nor research with961

human subjects.962

• Including this information in the supplemental material is fine, but if the main contribu-963

tion of the paper involves human subjects, then as much detail as possible should be964

included in the main paper.965

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,966

or other labor should be paid at least the minimum wage in the country of the data967

collector.968

15. Institutional review board (IRB) approvals or equivalent for research with human969

subjects970

Question: Does the paper describe potential risks incurred by study participants, whether971

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)972

approvals (or an equivalent approval/review based on the requirements of your country or973

institution) were obtained?974

Answer: [NA]975

Justification: Not Applicable.976

Guidelines:977

• The answer NA means that the paper does not involve crowdsourcing nor research with978

human subjects.979

• Depending on the country in which research is conducted, IRB approval (or equivalent)980

may be required for any human subjects research. If you obtained IRB approval, you981

should clearly state this in the paper.982

• We recognize that the procedures for this may vary significantly between institutions983

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the984

guidelines for their institution.985

• For initial submissions, do not include any information that would break anonymity (if986

applicable), such as the institution conducting the review.987

16. Declaration of LLM usage988
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Question: Does the paper describe the usage of LLMs if it is an important, original, or989

non-standard component of the core methods in this research? Note that if the LLM is used990

only for writing, editing, or formatting purposes and does not impact the core methodology,991

scientific rigorousness, or originality of the research, declaration is not required.992

Answer: [NA]993

Justification: Not Applicable.994

Guidelines:995

• The answer NA means that the core method development in this research does not996

involve LLMs as any important, original, or non-standard components.997

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)998

for what should or should not be described.999
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