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Optimally Ordered Orthogonal Neighbor Joining
Trees for Hierarchical Cluster Analysis

Tong Ge, Xu Luo, Yunhai Wang, Michael Sedlmair, Zhanglin Cheng,
Ying Zhao, Xin Liu, Oliver Deussen and Baoquan Chen

Abstract—We propose to use optimally ordered orthogonal neighbor-joining (O3NJ) trees as a new way to visually explore cluster
structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is
similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data
points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to
use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a
new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits
of this approach for exploring multi-dimensional data in areas such as biology or image analysis.

Index Terms—Neighbor Joining, Leaf Ordering, Orthogonal Layout
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1 INTRODUCTION

Cluster analysis, a technique widely used in data science,
divides data into groups of similar observations. While
many fully automatic clustering algorithms exist, they do not
always yield meaningful results. For most methods a proper
number of clusters has to be pre-defined, which is not trivial,
requires a human in the loop, and often leads to a tedious
trial-and-error process. To cope with such challenges, visual
interactive clustering [13] has been developed to support
users in finding proper clustering parameters and inspecting
their results.

Instead of producing a pre-defined number of clusters,
hierarchical cluster analysis [54]. seeks to build a cluster
hierarchy that enables users to explore possible clusterings at
different levels. A commonly used method is Agglomerative
Hierarchical Clustering (AHC) [12] that creates a dendrogram,
a binary tree diagram that illustrates how clusters are merged
at each agglomeration step (an example is given in Fig. 1(d)).
In such a diagram the leaf nodes represent data points, the
positions of inner “joining” nodes represent the weighted
mean of their children such that their position is proportional
to the distance between the children in data space.
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To cluster a given dataset, users move a “similarity bar”
over the dendrogram (dashed black line in Fig. 1(d)), and
while doing so they interactively “cut” the dendrogram into
pieces to find a proper number of clusters. Dendrograms
originated from biology [50] for clustering genes, we refer
to them more generally as HC trees (hierarchical clustering
trees).

HC trees have been successfully applied in various visual
analysis projects [45], and are part of standard systems
for data analysis [18]. However, they have two drawbacks
that limit their effectiveness. First, all leaves in a HC tree
with the same lowest common ancestor have the same path
length between each other; therefore, their distance within
the tree might not fit to the actual distance in data space, which
is essential for characterizing clusters within general high
dimensional data. An example is shown in Fig. 1(d)), where
each node of the red cluster has a different distance to the
nodes of the blue cluster, but using HC (see Fig. 1(d)) the
tree distances between leaves of the red cluster to leaves of
the blue are all the same. This indicates that HC trees do
not represent data distances well. As a result, it is hard to
see outliers among the leaf nodes of a HC tree (see the two
outliers enclosed by the red circle in Fig. 1(c)). Second, HC
trees are not able to reveal the intrinsic cluster structure of
many datasets, since in every step the two closest clusters are
merged. Such an approach might fail in cases when clusters
are not linearly separable [15], as it does not pay attention
to inter-cluster distances. As shown in Fig. 1(b) and (d), the
orange cluster is incorrectly merged with the green cluster,
although the red and blue clusters are separated. Moreover,
organizing clusters into a binary tree might be improper for
datasets having three or more major clusters.

To mitigate these problems, we propose to use orthogonal
neighbor-joining (NJ) trees for interactive hierarchical cluster
analysis. In contrast to HC trees, only a few approaches
use NJ trees for multi-dimensional data visualization [11],
[16], [35], [52]. These techniques mainly use such trees as
a projection technique and show their results subsequently
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Fig. 1. A given dataset (a) is better clustered by our optimally ordered orthogonal neighbor joining tree (O3NJTree) (f) than by a dendrogram (d)
produced by the hierarchical clustering (HC) method with complete linkage. Subfigure (b) shows the nested five clusters generated by cutting the
dendrogram with a minimum similarity bar; (c) shows four clusters automatically extracted with our method; (e) displays the NJ tree with random leaf
order while (f) shows the same tree with optimal leaf order (left) and resulting cluster tree (right) as described in the paper.

with radial layouts. Trees are used for the aforementioned
advantage of showing data distances more precisely than
other techniques. An orthogonal tree layout, however,
performs better than a radial layout when using NJ trees
for hierarchical cluster analysis [8], [32]. Since NJ trees have
varying edge lengths, their leaves are not aligned to each
other anymore, making it hard for the user to identify the
cluster hierarchy (Figure 1(e)). This problem becomes even
larger with the increasing number of leaves.

To address this issue, we propose a new leaf ordering
algorithm for NJ trees that places leaves with large similar-
ities adjacent to each other so as to clearly reveal clusters.
Such trees look like terrains with peaks and valleys (see
Fig. 1(f)). We call these representations Optimally Ordered
Orthogonal Neighbor Joining (O3NJ) Trees. While a number of
leaf ordering methods have been proposed for HC trees [3],
[10], [14], [42], such methods cannot produce an optimal
ordering for NJ trees due to the unequal edge lengths. As far
as we know, our algorithm is the first method for ordering
orthogonal NJ trees in which adjacent leaves satisfy two
conditions: i) similar distances to the root, and ii) small data
distances between them. Moreover, our method is over one
order of magnitude faster than all other existing leaf ordering
algorithms.

Although our leaf ordering algorithm arranges leaves
with similar root-leaf distances in adjacent positions, the
exploration of the cluster hierarchy is not easy, since adjacent
leaves might not belong to the same cluster. To improve
exploration, especially for large O3NJ trees, we propose a
method that highlights the intrinsic cluster tree by using its
geometric representation as well as the topological features
of the tree structure. Specifically, our ordering method first

identifies outliers that have large distances to the root, and
then performs a persistence-inspired analysis to extract
clusters, which are clearly visible “peaks” and “valleys” in
the tree structure. In Figure 1(f) the two red leaves enclosed
by a red circle define an outlier cluster, while the green,
yellow and blue clusters are generated by analyzing peaks
and valleys.

In summary, our main contributions are as follows:
• We propose a dedicated and fast optimal leaf ordering

algorithm for orthogonal NJ trees (O3NJ trees) so that
clusters and outliers are clearly shown;

• We introduce an algorithm to extract the cluster structure
from O3NJ trees; and

• We demonstrate the usefulness of our approach for
exploring multi-dimensional data by conducting a
numerical evaluation and case studies in interactive
clustering, evolutionary analysis, and image classifica-
tion.

2 RELATED WORK

Existing related work can be divided into three categories:
hierarchical cluster analysis, visualization of cluster hierar-
chies, and leaf ordering for trees generated by hierarchical
clustering.

2.1 Hierarchical Clustering Anaylsis
A complete review of hierarchical clustering is beyond
the scope of this paper; we therefore refer the reader to
Han et al. [23] and restrict our discussion to the design
of Agglomerative Hierarchical Clustering (AHC) methods,
which are most commonly used.
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These methods work in a bottom-up manner [25]. Given
n data points and an n × n distance matrix, an AHC
algorithm first assigns each element to a cluster, then
merges the closest pair of clusters into a single cluster and
computes the distances between the new cluster and each
of the other clusters. This step is repeated until only a
single cluster remains. The distance measure between two
clusters is referred to as the linkage criterion, which can be
defined in various ways. Common criteria are single linkage,
complete linkage, average linkage, centroid linkage, and
Ward’s method [33].

Each linkage criterion and associated AHC method has its
advantages and disadvantages [54]. Previous studies show
that average linkage, centroid linkage, as well as Ward’s
linkage are quite sensitive to shape and size of clusters [27],
[31]. Single linkage can handle non-elliptical shapes, but is
sensitive to noise and outliers. In contrast to them, complete
linkage is less susceptible to noise and outliers, but tends
to break large clusters. Since average linkage considers all
pairwise distances for computing the cluster distance, it
is more robust to outliers than other methods, but also
computationally more expensive. Previous works [27], [31],
[43] quantitatively compared these methods using numeric
measures such as the cophenetic correlation coefficient [50]
and provided guidelines for choosing appropriate clustering
methods. For simplicity, we call all these methods “ordinary
AHC methods” in order to distinguish them from our NJ
algorithm, which is also an AHC method.

NJ trees are widely used for phylogenetic data analy-
sis [41], [52]. The method resembles ordinary AHC methods,
but has some unique properties. Most importantly, it ensures
that each two merged clusters are not only close to each other
but also far apart from the rest. Hence, the generated cluster
hierarchies might differ from the ones produced by ordinary
methods.

Biological data analysis has shown that NJ trees perform
better in many cases [34], [51].

Besides biology, NJ trees have also been used for the
visualization of document collections, where NJ clustering
results are visualized as a multi-dimensional projection using
a radial layout [11], [35]. There is, however, no previous study
that compares these methods for general multi-dimensional
data. Our comparative evaluation shows that NJ trees not
only better preserve input distances but also the rank order
for most datasets. In this paper we show how this tree
structure helps to examine hierarchical cluster analysis of
large datasets.

2.2 Visualization of Cluster Hierarchies
A variety of graphical representations have been developed
for rendering tree structures, including classical node-link
diagrams, icicle, nested enclosure, indented outline or
treemap representations [47]. McGuffin and Robert [30]
systematically compare the space efficiency of these methods
and provide guidelines for choosing a good representation.
In this paper we focus on node-link diagrams, which are
most commonly used to visualize cluster hierarchies. For
hierarchies generated by ordinary AHC and NJ methods,
the corresponding diagrams are referred to as cladogram or
phylogram (in biology) [37], both of them are specific types of

dendrograms. For convenience, we refer to cladograms as HC
trees and phylograms as NJ trees. Both tree diagrams encode
distances between data elements by using path lengths, with
NJ trees having unequal path lengths from the root to the
leaves.

Dendrograms are often drawn with an orthogonal layout,
either in vertical or horizontal orientation. The hierarchical
clustering explorer by Seo and Shneiderman [45] enhances
HC trees with dynamic query controls for interactive
exploration. Munzner presented tree-juxtaposer [32] which
allows users to navigate large hierarchies with a global
rectangular focus+context technique.

Etemadpour et al. [16] have shown that NJ trees drawn
with radial layouts [1] can be used as a projection method
for multi-dimensional data. But representing NJ trees with
a radial layout is less suited for hierarchical structures
as reported by Burch et al. [8]. An orthogonal layout
seems to be a good compromise between compactness and
readability [32]. Thus, in this paper we investigate how
orthogonal tree layouts can be used to support visual analysis
of NJ trees.

2.3 Leaf Ordering for Hierarchical Clustering
For an orthogonal tree diagram, leaf nodes are shown in
a linear order along one axis. Adjacent leaves in such a
linear ordering are assumed to be related [20], and thus a
good leaf ordering helps users to identify clusters of interest
and interpret the data. For a tree with n leaves, 2n−1 linear
orderings are possible. To find a proper leaf ordering, a
number of methods have been proposed [3], [10], [42] that
minimize distances of adjacent leaves.

The classic method was proposed by Bar-Joseph et al. [3]
and formulates leaf ordering as a dynamic programming
problem, which allows to produce good solutions in rea-
sonable time. Later, the authors extend and improve this
algorithm for k-ary trees, in which each internal node has at
most k children. Rather than only considering the distance
between two adjacent leaves, Chae et al. [10] propose to order
the leaves based on the bilateral symmetric distance between
each two adjacent clusters such that similar objects in the
clusters are located at the cluster boundaries. Recently, Sakai
et al. [42] further incorporate the orientation of clusters at
each merge step into leaf ordering.

Most of them, however, aim at sorting ordinary HC
trees with equal edge lengths and do not take the special
characteristics of NJ trees into account. Specifically, ordinary
AHC methods pick the two closest clusters for merging, if
the corresponding nodes of these clusters are adjacent in the
HC tree, their leaf ordering accurately reflects the merging
procedure. The NJ method, however, merges nodes that
are not only similar to each other, but also far from other
nodes. Thus, if we would simply apply existing ordering
methods for NJ trees, the ordered leaf nodes would not
accurately represent the cluster structure revealed by the
NJ algorithm. Fig. 3(e) shows an example, where the center
cluster is interrupted by three outliers (B, K and E). So far,
almost all existing NJ tree visualizations arrange the order of
leaf nodes randomly.

To bridge this gap, we propose an efficient leaf ordering
algorithm that finds a linear ordering in which the sum of
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Fig. 2. Illustration of the NJ algorithm and comparison between an NJ tree and a HC tree. (a) input distance matrix; (b) creating the NJ algorithm by
using the input distance matrix; (c) orthogonal NJ tree where the root is the duplication of U4; (d) HC tree generated by applying the AHC method
with average linkage according to the matrix in (a).

absolute edge length differences between adjacent elements
is minimized. Such an ordering visualizes the separation
between large groups very clearly, meanwhile it allows to
spot outliers and small clusters on a detailed level.

3 BACKGROUND

In this section, we first describe the classic neighbor joining
algorithm [41] and then our qualitative comparison between
AHC and NJ trees to justify that they better represent general
high-dimensional data.

3.1 Neighbor Joining Algorithm
Given a distance matrix with the relations of n data points
in d dimensions. The NJ method starts with a star-like
tree where each leaf node corresponds to a data element.
Iteratively two neighboring nodes are joined until a complete
binary tree is obtained:

1) Calculate a new distance matrix Q from D by setting
Qij = Dij − (Si + Sj) where Si is the net divergence:

Si =
1

n− 2

∑
k ̸=i

Dik. (1)

2) Identify the pair of nodes i and j with minimal Qij ;
3) Join nodes i and j at node x and compute the branch

lengths between from node x to i and j:

lxi = Dij/2 + (Si − Sj)/2

lxj = Dij/2 + (Sj − Si)/2 (2)

4) Update D by replacing nodes i and j with node x and
compute the distance from x to each other node k;

Dxk = (Dik +Djk −Dij)/2 (3)

5) Repeat the steps 1-4 until only two nodes remain.
By constructing Q based on the average divergence while

joining nodes using the least-distant pair of nodes in Q, the
NJ algorithm takes into account intra-cluster compactness as
well as inter-cluster separation.

Fig. 2 illustrates the algorithm with the input distance
matrix. Nodes A and B are first joined with the minimum
QAB = −27.5. The distances from these two nodes to
their common ancestor U1 are 2.75 and 7.25. Following this
procedure, an un-rooted NJ tree is generated that fits to the
actual distance in data space.

Rooting Strategy As already mentioned (and shown in
Fig. 2(b)), an NJ tree does not have a root by default. However,
biologists often explore NJ trees using orthogonal layouts,
so a root is needed. To address this issue, we follow a
rooting strategy given in Bottu [5] that simply duplicates
the last formed internal node to create the root node (U4 in
Fig. 2(c)). The root can also be specified by a domain expert
or determined by other strategies like using the midpoint
of the longest path between any two leaves in the tree [5].
Note that we cannot follow the AHC method [25] to form
the root by merging the last two remaining nodes, because
the inter-cluster distance cannot be computed for two nodes.

3.2 Distance Preservation within NJ Trees
Previous studies have shown that NJ trees much better fit
to the input distances than AHC trees [34], [51]; however,
most of these studies are based on biological data. To verify
that NJ trees also are better in representing general high
dimensional data, we quantitatively compared them against
trees produced by different variants of the AHC algorithm.
We checked how well distances between any pair of data
points fit the path lengths between the corresponding leaf
nodes of the trees. The path length is defined as the sum of
all edge lengths in the path from node i to j.

We collected 47 datasets of different sizes and dimension-
ality with substantial variations and measured the differences
between data point distances and edge lengths. Experimental
details and results can be found in the supplemental material,
which show that NJ trees better represent the input data than
AHC trees for most datasets. Figs. 2(c,d) show an example
to illustrate why an orthogonal NJ tree performs better than
an AHC tree. Path lengths between any pair of nodes in
an NJ tree are much closer to the data distances between
the nodes than for AHC trees. For example, the path length
between leaf nodes A and B in the AHC tree is 16, while the
data distance between them is only 10. The paths between
node pairs (A,F), (C,F), (D,E), (D,F) and (E,F) show the same
issue. This results from the merging procedure within AHC
methods, where computing branch lengths is solely based
on intra-cluster distances Dij [17], without considering the
corresponding inter-cluster distance Si + Sj .

While NJ trees are superior in representing data distances
faithfully, they cannot correctly encode the distance for any
given distance matrix, especially ones that do not obey
Buneman’s 4-point condition [7]. However, previous studies
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show that NJ trees are still one of the best approximations
for those matrices [28].

4 LEAF ORDERING FOR ORTHOGONAL NJ TREES

Once we have a rooted orthogonal NJ tree with n leaf nodes,
there are 2n−1 possible leaf orderings, which is similar to an
HC tree. Since the closeness of adjacent leaf nodes visually
indicates the similarity of the underlying data points (such
as coming from the same cluster), an optimal leaf ordering
(OLO) would help users to detect cluster structures in the
data. This problem has been studied well for HC trees [3],
[10], [42], but to the best of our knowledge no studies exist
for NJ trees.

In Fig. 3(d) we show that random ordering mixes different
clusters, hindering the user from determining meaningful
cluster boundaries. For example, nodes I, E, K, and B in
Fig. 3(d) are adjacent, but node I is an outlier as shown in
Fig. 3(b). Furthermore, leaf orderings produced by existing
OLO algorithms do not really work for NJ trees, since
these algorithms are designed for revealing cluster structures
produced by ordinary AHC algorithms, which are different
from our proposed NJ algorithm. Instead, our proposed OLO
algorithm for NJ trees (OLONJ) aims to reveal the cluster
structures characterized by the NJ algorithm. An example is
shown in Fig. 3(f), where the two clusters and the outlier are
separated well.

4.1 Problem Definition
As shown in Fig. 3(f), nodes belonging to the same cluster
have similar path lengths to the root and should be adjacent
to each other. Hence, our desired ordering places nodes with
similar path lengths from the root at adjacent locations. Only
optimizing this objective, however, would not be enough,
since nodes with similar path lengths to the root might not be
similar. For example, the leaf nodes B, E, K and I in Fig. 3(d)
have similar path lengths from the root, but nodes B, E,
and K form one cluster in the MDS-based scatterplot (see
Fig. 3(b)) while node I is an outlier. By carefully analyzing
the result, we see that the distances between nodes B, E, K
and I are quite large, which is verified by the scatterplot
shown in Fig. 3(b). In other words, if two nodes with similar
path lengths from the root have a large pairwise distance,
they should not be adjacent. Thus, we enforce an additional
constraint: the data distance between two adjacent nodes
should not be larger than a given threshold, otherwise the
nodes have to be separated.

For short, the path length from the root to a leaf node i is
denoted as pi. We aim to find an ordering ϕ that minimizes
the sum of absolute path length differences between adjacent
leaves ϕi and ϕi+1:

min
ϕ

n−1∑
i=1

|pϕi
− pϕi+1

|, (4)

with a hard constraint that Di,i+1 should be smaller than a
given threshold t.

Algorithm 1 Optimal Leaf Ordering of NJ tree
1: function OLONJ(u,D)
2: if |u| == 1 then
3: C(u, v, v) = 0 return C(u, v, v)
4: else
5: C(ul, L,R) = OLONJ(ul, D)
6: C(ur, L,R) = OLONJ(ur, D)
7: for v in leaves of ul do // left subtree of u
8: for w in leaves of ur do // right subtree of u
9: if Dm,k ≤ t then

10: C(u, v, w) =
11: min

m∈ul,k∈ur

C(ul, v,m) + C(ur, k, w)

12: +|pm − pk|
13: else
14: C(u, v, w) = +∞
15: end if
16: C(u,w, v) = C(u, v, w)
17: end for
18: end for
19: end if
20: return C(u, L,R) // L and R denote all possible
21: // pairs of leaves from ul and ur

22: end function

Relationship to HC Tree Ordering. The OLO for a HC tree
aims to find an ordering that minimizes the differences of
the adjacent leaves in the ordering:

min
ϕ

n−1∑
i=1

Dϕi,i+1
. (5)

Since the path length in the HC tree represents the distances
between data points, Eq. (5) can be written as:

min
ϕ

n−1∑
i=1

pϕi
+ pϕi+1

, (6)

which is the sum of path length between adjacent leaf nodes.
Since it is substantially different from Eq. 4, applying this
OLO algorithm (Eq. 5) to the NJ tree produces undesired
results. For example, the ordering separates node I from
the clusters in Fig. 3(e), but places the yellow cluster in the
middle of the blue cluster. In contrast, minimizing Eq. 4
clearly reveals three clusters in Fig. 3(f), where all nodes in
the blue cluster are arranged together.

4.2 Dynamic Programming
Like the OLO algorithms [2], [3] for HC trees, Eq. (4) can also
be solved by using dynamic programming (DP). Since this
problem is defined on the NJ tree, we can take the advantage
of having a binary tree structure to decompose this problem
into subproblems for ordering sub-trees.

Hence, we associate the ordering of each leaf sub-
sequence with an internal node. For each internal node u,
let its children be ul, ur, the number of leaves |u|, and the
cost of the optimal ordering of its subtree C(u). For every
pair of leaves v ∈ ul and w ∈ ur, C(u, v, w) is the cost for
optimal ordering of the subtree rooted at u with the leftmost
and rightmost leaf nodes v and w, and C(u) is the minimum
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Fig. 3. Comparison between ordinal hierarchical clustering (HC) and NJ trees generated from the same distance matrix as shown in (a). (b) Scatter
plot with three clusters produced by multi-dimensional scaling; (c) HC tree where positions do not accurately resemble distances, e.g., the distance
between I and A is 29 and the distance between I and B is 45, but the horizontal position of their least common ancestor (the root node) has the same
horizontal path length to the nodes I, A and B. Moreover, cutting the HC tree into three branches (black line) results in incorrect groupings for I and D.
NJ trees accurately encode the distance matrix, but so far no good ordering algorithm exists: (d) NJ tree displayed with a random order, as currently
done in an R package [36]; (e) NJ tree ordered by using the OLO algorithm [3]; (f) NJ tree ordered by our algorithm, three useful clusters are created.

of all possible C(u, v, w). Based on the tree decomposition,
Eq. (4) can be re-written in a recursive form:

C(u, v, w) = min
m∈ul,k∈ur

C(ul, v,m) + C(ur, k, w) + d(m, k)

(7)
subject to Dm,k ≤ t

where the leaf m is the rightmost leaf of µl and k is the
leftmost leaf of µr. By default, d(m, k) is the absolute path
length difference between the nodes m and k. To integrate
the hard constraint Dm,k ≤ t to the DP procedure, we set
d(m, k) to +∞ if the distance between nodes m and k is
larger than t. Hence, d(m, k) is defined as:

d(m, k) =

{
|pm − pk|, if Dm, k ≤ t

+∞ if Dm, k > t.

As shown in Algorithm 1, this ordering works in a bottom-
up way. When calculating the C values for the subtree rooted
by u, the C values of ul and ur are already computed and
stored in a table. Once C(µ, v, w) for all pairs of v and w are
computed, the smallest value of C(u, v, w) is C(u).

Time Complexity. Because of the tabled values, C(u, v, w)
is computed only once for each of the O(n2) pairs of leaves
v and w. Each computation of C(u, v, w) involves all the
possible m, k leaves that lie in the intersection of ul and
ur and thus results in at most O(n2) time. In all, the time
complexity of the whole algorithm is O(n4).

4.3 Acceleration techniques
We propose two acceleration techniques to dramatically
decrease the running time of our algorithm while producing
an accurate and optimal leaf ordering.

Early Termination. Since all values of C(ul, v, R) and
C(ur, L, w) are already computed when we compute
C(u, L,R), we can terminate the search of best pairs of m
and k early when C(u, L,R) cannot be further improved. To
achieve this goal, we take the following pre-processing steps
to reduce computation time:

• compute the minimum path length difference minP =
minv∈ul,w∈ur |pv − pw|;

• sort C(ul, v, R) and C(ur, L, w) in ascending order,
where R denotes all possible right leaves of ul when v is
the leftmost leave of ul and L is the same for w and µr .

Accordingly, we compute C(u, v, w) by performing two
loops of m and k according to the order of C(ul, v, R) and
C(ur, L, w). Denote by curC the current minimal cost we
have for C(u, v, w). For a given pair of leaves m and k, if
we have C(ul, v,m) + C(ur, k, w) + minP ≥ curC, then
any leaf pair m, k′ coming after k cannot produce a value
that is smaller than curC and thus the loop of k can be
terminated. Likewise, the loop for m can also be terminated
earlier. Algorithm 2 outlines this procedure.

Algorithm 2 Early Termination for computing C(u, v, w)

1: minP = minv∈ul,w∈ur |pv − pw|
2: curC = +∞
3: for m in ordered C(ul, v,m) do
4: if C(ul, v,m) + C(ur, k0, w) +minP ≥ curC then
5: C(u, v, w) = curC; break
6: end if
7: for k in ordered C(ur, k, w) do
8: if C(ul, v,m)+C(ur, k, w)+minP ≥ curC then
9: break

10: end if
11: if Dm,k < t then
12: tmp = C(ul, v,m) + C(ur, k, w) + |pm − pk|
13: else
14: tmp = +∞
15: end if
16: if curC > tmp then
17: curC = tmp
18: end if
19: end for
20: end for
21: C(u, v, w) = curC

Sequence Simplification. Looking at the array P =
{p1, · · · , pn} we see that Eq. 4 reaches its minimum when
P is a monotonic sequence. While this does not allow us to
overlook the underlying NJ tree, it

suggests us to reduce the search space of the DP algorithm
by partitioning the whole tree into a few sub-trees whose
path lengths to the root form a few monotonic sub-sequences.
Since the leaf ordering in each of these monotonic sub-trees
could be seen as fixed, we can simplify each sub-tree by its
leftmost and rightmost leaves for finding the optimal leaf
ordering and the computations time is further reduced. To
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Fig. 4. Overview of our leaf ordering algorithm: (a) an orthogonal NJ tree with unequal edge length where each node is assigned a weight based on
the edge length; (b) by performing monotonicity based flipping within a breadth-first traversal the inversion is reduced; (c) extraction of the ordered
sub-trees with a depth-first traversal; (d) the optimal leaf ordering result is obtained by applying the DP algorithm to the ordered sub-trees.

this end, we perform the following two steps to construct a
few monotonic sub-trees.

• Initialization. A weight is assigned to each node. For a
leaf node, the weight is its path length to the root; for
each internal node µ, its weight is the average of all
weights of its leaves.
Fig. 4(a) shows an example, where all nodes have been
assigned weights except the root.

• Flipping. A monotonic sequence does not have any
inversions. Two elements pi and pj form an inversion if
pi > pj and i < j. We reduce the number of inversions
within a sub-tree by flipping nodes at each level using a
breadth-first traversal. For each internal node u at the
ith level, we check if the weight of its right child node
ur is smaller than the one of the left child node ul. If this
is the case, we flip the two sub-trees rooted at u. This
level-by-level flipping gradually reduces the number
of inversions. In Fig. 4(b) the number of inversions are
reduced from 33 to 8 after traversal. Since nodes at the
same level might not be adjacent because of unequal
edge lengths, flipping cannot reduce the cost of leaf
ordering.

On the right of Fig. 4(b), a few ordered sub-trees with
monotonically decreasing edge lengths are generated and
then such sub-trees can be extracted by performing the
depth-first traversal. Based on sub-trees, we employ the
DP algorithm with early termination to find an optimal leaf
ordering. Fig. 4(d) shows the final ordering result for the
input NJ tree, noticing that the threshold t is by default the
average of the distance matrix.

5 CLUSTER TREE DISTILLING

As mentioned above, the leaves of an O3NJ tree have unequal
root-leaf distances and thus do not align with each other.
Moreover, two adjacent leaves might not belong to the
same cluster. For example, the two red leaves enclosed in
a red box in Fig. 1(f) form a cluster of outliers, while their
adjacent green leaves belong to another cluster. These two
characteristics create difficulties for the user to explore a
hierarchy when using an NJ tree. To address this issue, we
propose a new method to distill a cluster tree from an O3NJ
tree. Fig. 5 shows the pipeline of our method that consists of

two steps: 1) tree splitting based on an analysis of root-leaf
distances and 2) hierarchical clustering of the 1D curve (the
gray curve in Fig. 5(b)) formed by connecting the positions
of adjacent leaves with line segments.

Tree Splitting. In this step, we first compute the Absolute
Adjacent Root-leaf Distance Difference (ARD) for all pairs
of adjacent leaves and then find a proper threshold to cut
the tree. The histogram on the right of Fig. 5(a) shows the
sorted ARD set of the tree on the left. We see that only two
adjacent leaf pairs have large distance differences. This is
reasonable, since our leaf ordering algorithm guarantees that
most adjacent leaves have a similar root-leaf distance. Thus,
we consider ARD value as outliers if their values lie above a
threshold:

ω = q75 + 1.5(q75− q25) (8)

where q75 and q25 are the 75th and 25th percentile of the
ARD values. Once we defined ω according to that formula,
we can cut the tree into different branches, cf. Fig. 5(b).

Hierarchy generation. For each branch in the split O3NJ tree,
adjacent leaves have similar root-leaf distances. Connecting
them with line segments forms a curve with peaks and
valleys. In Fig. 5(c), such peaks and valleys are highlighted
for the middle branch. For each leaf, we find the lowest
common ancestor (LCA) for its left and right adjacent nodes.
Once they are found, we distill a new cluster tree based on the
parent-child relationship between these LCA nodes. Fig. 5(d)
illustrates the two-level hierarchy of clusters obtained by
such a peak-valley analysis, the corresponding clusters are
shown in Fig. 5(e).

Visual Encoding. We visualize the distilled cluster tree with
an orthogonal tree where the number of children of each
parent is determined by cluster structures. For example, the
root nodes in Fig. 1 and Fig. 5 have two and three children,
respectively. Meanwhile, the size of each node is proportional
to the number of elements in the corresponding cluster, while
each node has a unique color.

Persistence-inspired Simplification. Because of our sub-
monotonic DP algorithm, the leaves of an O3NJ tree do
not satisfy strict monotonicity, which results in many small
noisy peaks and valleys. In order to reveal the hierarchy of
major clusters, we use the persistence-inspired topological
simplification by Weinkauf et al. [53] to remove such noisy
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Fig. 5. Distilling the cluster tree from an O3NJ tree includes splitting and hierarchy extraction: (a) input O3NJ tree and a histogram of the ARD values;
(b) the selected threshold from the histogram in (a) cuts the tree into three parts; (c) identified peaks and valleys as well as corresponding two-level
cluster tree for the middle branch; (d) distilled cluster tree and nested clusters shown as scatter plot (right).

peaks and valleys, where the persistence is defined by the
root-leaf distance difference between adjacent peaks and
valleys. We successively remove adjacent peaks and valleys
with the smallest persistence values and merge them to
adjacent large ones until a given persistence threshold β
is reached. Since most persistence values are quite small
(see Fig. 6(b)), we set β to a value of 10% of the maximal
persistence following the suggestion of Gyulassy et al. [21].
As shown in Fig. 6(c), this default threshold removes the
most noisy peaks and valleys, while resulting in meaningful
clusters.

6 EVALUATION

We implemented O3NJ tree in Javascript and created a
functioning interface, which is available on GitHub1. Two
aspects of the effectiveness of our method were evaluated:
its clustering accuracy with default settings and the insights
revealed by interactive exploration of the distilled cluster
trees. Hence, we performed a quantitative comparison with
state-of-the-art methods and two case studies using real
datasets. All the experiments were done on a Windows
desktop computer with an Intel Core i7-8700K processor
with 16GB memory. Since the time complexity of our OLONJ
algorithm is O(n4), ordering the NJ tree shown in Fig. 1
takes around 500 ms, whereas generating the tree takes less
than 50 ms.

6.1 Quantitative Evaluation
We quantitatively compared our method against three widely
used clustering methods: the AHC method with complete
linkage, k-means clustering, and the robust continuous
clustering (RCC) method [46], which correspond to three
different types of methods: nonparametric methods, center-
based methods, and continuous objective-based methods
without requiring prior knowledge about cluster numbers.
The default value of parameter ω is defined in Eq. 8, the
values of the thresholds t and β are half of the average
data distance and 10% of the maximal data distance and
persistence, respectively.

Datasets. We collected 52 labeled datasets of different sizes
and dimensionalities having substantial variations in terms of

1. https://github.com/Ideas-Laboratory/O3NJ

Fig. 6. Persistence-inspired simplification of an O3NJ tree: the optimally
ordered version of Fig. 1(e) is the input shown in (a), a default threshold of
10% of the maximal persistence value shown in the persistence histogram
in (b) removes most noisy peaks and valleys and results in the cluster
hierarchy shown in (c).
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Fig. 7. Values of NMI (a) and RI (b) for the four different clustering
methods: the blue boxplots show the score distributions over all 52
datasets and red boxplots give the score of the 33 real datasets.

data size (ranging from 24 to 1473) and data dimensionality,
(ranging from 2 to 617). Among them, 19 synthetic datasets
are often used for the evaluation of clustering methods [19],
and the other 33 real datasets are coming from the UCI
repository [29]. For these datasets, the number of classes is
taken as input for k-means, while for our method and AHC

https://github.com/Ideas-Laboratory/O3NJ
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they are used to guide the cut for the cluster trees.

Measures. We chose Normalized Mutual Information
(NMI) [49] and Rand Index (RI) [40], as measures, both
have been widely used for evaluating the accuracy of
various clustering techniques. NMI is a normalization of
the mutual information (MI) score which measures the
similarity between cluster labels and class labels, while RI
measures the likelihood that a pair of points is either in
the same cluster or in different clusters for two clustering
results. Hence, the range of both measures is between 0 and
1, where 0 indicates that the cluster results do not agree with
the class label and 1 indicates that the cluster results are
exactly the same as the class labels. Note that the clustering
method does not return class labels, thus we need to find the
best one-to-one match between our cluster labels and the
ground truth.

Results. All individual NMI and RI values generated by the
four different clustering methods for each dataset, as well as
screenshots of all the distilled cluster trees and AHC cluster
trees can be found in the supplemental material. To facilitate
the comparison between different clustering methods, we
summarize the NMI and RI scores over all 52 datasets and
over the 33 real datasets. The results are shown by the blue
and red boxplots in Figures 7(a,b).

On average, our method produces better NMI and RI
scores than the other methods. In terms of NMI, our method
shows its benefits compared to the others, while HC performs
the worst. However, the RI scores of the best cases of all four
methods are very close. Comparing the red boxplots with the
blue ones, we can see that all methods have smaller variances
for the real datasets, while our method has the smallest one.
In sum, our method works better than the tested existing
methods and works well for most real datasets. An example
is shown in Fig. 8, where our distilled cluster tree clearly
separates the classes J and C, while the HC tree does not do
that.
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Fig. 8. (a) Clustering accuracy of the Isolet data generated by different
methods, (b) cluster trees produced by our method (b) and the AHC
method (c).

6.2 Case Studies
Cucumber Data. In evolutionary analysis [24], [39], biologists
often use multi-dimensional scaling (MDS) [4] to reduce high-
dimensional genome data collected from various species into
2D scatterplots. These scatterplots are then used to explore
class separation and study evolutionary relationships among

Fig. 9. Exploration of the Cucumber data: (a) O3NJ tree and distilled
hierarchy; (b) MDS plot; (c) heat map showing the input distance matrix.
Three kinds of inconsistencies between our O3NJ tree representation
and the MDS results are highlighted by black, green and blue circles in
the O3NJ tree, the corresponding nodes are also highlighted in the MDS
plot and the heap map. Class label and cluster index of each node are
encoded by border and fill color.

species with NJ trees. Our method not only combines these
two functionalities, but also produces more accurate results
as illustrated by the following case study using a cucumber
genome dataset, provided by one of our collaborators, a
biologist, who has more than 10 years of experience in
evolutionary analysis.

His data was collected by sequencing 23,436 genes from
115 cucumber species classified into 4 geographical classes:
East Asian, Eurasian, Indian, and Xishuangbanna. Using this
data, our collaborator had two analysis goals: i) verifying if
the classification matches with the inherent clusters in the
data; and ii) comparing the distribution of the Indian class to
the other classes, because he assumed that the Indian group
should be closer to the wild type [44], while the other three
groups belong to the cultivated type.

We analyzed the data together with our collaborator.
Using default parameters, we obtained an O3NJ tree and
a distilled two-level cluster tree with six clusters. Our
collaborator expected a one-to-one mapping between class
labels and cluster index (Task 1). While there were only
four classes, our method produced five major clusters
and one outlying cluster. The O3NJ tree visualizes this
inconsistency by encoding the class label and cluster index
of the corresponding nodes into their border and fill color
(see Fig. 9 (a)).

After examining the tree in Fig. 9 (a), our collaborator
came up with three observations: i) the green, cyan, and
yellow clusters match well with the classes of Xishuangbanna,
Eurasian and East Asian; ii) the brown and purple clusters
belong to the Indian class; iii) a few outliers are identified
from all clusters except the green one. From the first two
observations, he concluded that most classifications align
with the data characteristic, and the division of the Indian
class is also as expected. Based on the last observation, he
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then concentrated on the Xishuangbanna class, where the edge
lengths from the root i) are smaller than for other classes and
ii) have fewer variations. He did not expect this because the
Xishuangbanna class uniquely accumulates β-carotene in its
fruit [38]. Similarly, the five outliers in the East Asian class,
especially the three adjacent to the Indian sub-class 2 were
also unexpected. He told us that the East Asian class is often
assumed to be well cultivated and he was not aware of a
species close to the wild-type in this class.

To verify this observation, he checked if the O3NJ tree
was correct by comparing it to an MDS projection of the input
distance matrix (see Fig. 9 (b), colors are like in subfigure
(a)). The classes shown in green, cyan, and yellow are also
well-separated in the MDS plot, but the distribution of two
Indian sub-classes (in brown and purple) is quite different
from the O3NJ tree shown on the right of Fig. 9 (a). Some
nodes have small distances in the tree but large distances in
the MDS plot (see the two outliers denoted by a black circle),
others have large distances in the tree but small distances
in the MDS plot (the two outlier nodes denoted by a green
circle). Finally, some nodes of a class in the tree are close
to others in the MDS plot (the five nodes from the Indian
sub-class 2 are denoted by a blue circle adjacent to Indian
sub-class 1).

We jointly investigated the corresponding input distance
matrix (Fig. 9 (c)). The rows and columns of the heat map
that correspond to the outlier nodes with black circles

show that they are close to each other but far from other
nodes, which is consistent to the tree. Thus, our collaborator
concluded that our result more accurately reflects the input
data, which we further verified by measuring the stress
error [22] in the O3NJ tree and MDS plot (210.4 vs. 564.9).

Based on these experiences, our collaborator plans to
use a combination of O3NJ trees and MDS plots to further
investigate, which genes produce the unexpected outliers
in the East Asian class. Regarding the small edge lengths of
the Xishuangbanna class, he hypothesized that the distance
measure we used might not reflect the data accurately
enough. He will verify this by using different measures
in the future.

CIFAR-10 Image data. To demonstrate the usefulness of
our tool for larger datasets, we conducted a second case
study with the CIFAR-10 image dataset [26] with 10,000
32×32 color images labelled into 10 classes (different animals
and vehicles). For this case study, we worked together with
two deep learning experts, who have more than five years
of experience in deep learning research. They trained a
convolutional neural network (CNN) and used this model to
generate a 64-dimensional feature vector for each image. The
goal of our collaborators was to use an O3NJ-tree to validate
their CNN model and help answer two core questions: i)
which classes can be discriminated from others by the model
and which ones not; and ii) why this does not work well for
some classes.

The generated feature vectors correctly group the images
from different classes to a good model. Our collaborators
frequently do that by clustering the data, and then check
how well the clustering results match with the class labels
(a typical task in multi-dimensional data analysis [6]). We
hence tested this dataset with the four clustering algorithms
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Fig. 10. Exploration of the CIFAR-10 image data with our distilled cluster
tree: (a) clustering accuracy of several algorithms measured by the
Rand Index; (b) four representative images of the cluster consisting of
Horse and Deer classes; (c) sub-tree of the Car class shown in the
O3NJ tree with images of one outlier and three selected nodes; (d) the
distilled cluster tree, where each node is associated with a class label;
(e) representative images of two clusters: Bird & Airplane and Car class;
(f) representative images of two clusters: Bird & Airplane and Ship class.

used in Section 6.1 and measured the accuracy between
the clustering results and the existing class labels using the
RI. Fig. 10(a) shows the RI values of the different methods,
where our method performs the best, its improvement over
the second best is around 10%.

As shown in Fig. 10(d), two major clusters: animals and
vehicles are separated except that a subset of the bird class
is mixed with the airplane class. In the animal cluster, the
Frog and Bird classes are clearly separated and the Truck,
Car and Ship classes are well discriminated in the vehicle
cluster, whereas each of the other classes forms compound
clusters. To clearly indicate the overlapping degree of these
clusters, we visualize the percentages of mixed classes with
a pie chart as an overlay for each node.

To verify that the compound clusters are reasonable,
our collaborators explored the tree structure for each class.
Fig. 10(c) shows a sub-tree of the Car class, where an
outlier (airplane) is clearly shown, the three other selected
nodes correspond to cars of different poses and colors.
This indicates that the feature vectors generated by this
model have a strong intra-class discrimination ability. During
further exploration, they found that the adjacent nodes of the
outlier airplane correspond to images with red foreground
objects, (third image on the bottom of Fig. 10(c)). They also
investigated images from clusters with mixed classes to learn
why such images cannot be discriminated by their model.
Fig. 10(e) shows six representative images of the cluster
mixed from birds and airplanes. Flying birds have very
similar shapes to flying airplanes. Further investigating the
bird and airplane clusters (see Fig. 10(e,f)) shows that most
images in these two clusters have very different shapes.

Our collaborators also investigated the other two clusters
with mixed classes and obtained similar findings. They found
their CNN model might pay too much attention to the global
shape and too little to the local context and that more local
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shape information has to be incorporated.
In addition, they concluded that the model might give too

large weights to the color of some objects (e.g, cars). Hence,
they want to find better ways to combine different properties.
Finally, they confirmed that our method and associated
clusters as well as the outliers are more accurate and intuitive
than their current practices, so they will continue to use it.

7 DISCUSSION

(b)

(a)

(c)

Fig. 11. A failure case of our O3NJtree. (a) the ground truth; (b) An input
O3NJ tree and the distilled cluster tree; (c) our clustering result.

While O3NJ trees provide a superior overview of
clustering results with respect to other methods, there are still
some drawbacks. First, minimizing the differences of root-
leaf path lengths of adjacent leaves, instead of the distances
of points in the data space, may cause additional distortion.
For example, some leaves might be in the opposite direction
to the root and might be mis-grouped together. Although
most of such leaves can be filtered by the hard distance
threshold t, we plan to incorporate the distance between
adjacent nodes in data space into Eq. 4.

Second, O3NJ trees still fail to reveal some clusters
because the root-leaf distances do not capture the relative
differences between clusters for some datasets. For instance,
the three curves shown in Fig. 11 can be separated easily
by the distance from each other, but our O3NJ tree over-
segments each curve and groups multiple segments from
different curves to the same cluster. For analyzing such data,
we recommend using manifold learning algorithms [9].

Third, our approach introduces three parameters: the
distance threshold t, the ARD value ω, and the persistence
threshold β, which heavily influence the clustering results.
The default values of these parameters might not auto-
matically generate reasonable clustering results for some
challenging datasets. Although our linked view interface
enables interactive clustering by tuning these parameters, it
is an indirect interaction and might be misleading. In the
future, we therefore plan to explore guidelines for setting up
these parameters to control the level of detail (LoD) for the
O3NJ trees according to the requirements of visual readability
and space limitation.

Last, the NJ algorithm is slower than the ordinary AHC
method and shows worse spatial efficiency than HC trees,
which hampers the application of our approach for large data
sets. Accelerating strategies [35], [48] generate appropriate NJ
trees and have to be investigated if we can apply them to our
trees. To improve the spatial efficiency, we will combine our
ordering technique with radial NJ trees together to reduce
the required space.

8 CONCLUSION

We presented a novel visualization representation,
O3NJ trees, for hierarchical analysis of multi-dimensional
data. This representation is based on NJ trees, which so far
have been mostly used for phylogenetic data analysis in
biology. A quantitative comparison between NJ trees and
dendrograms produced by various ordinary AHC methods
shows that NJ trees characterize the inherent clusters for
general multi-dimensional data better than other methods.
Orthogonal NJ trees are thus an alternative approach for
interactive hierarchical cluster analysis. Since such trees
have varying edge lengths, identifying major clusters is hard.
To address this issue, we proposed a dedicated ordering
algorithm that helps users to better interpret adjacencies and
proximities within such trees and a new method to visually
distill a cluster tree from an ordered NJ tree. Finally, we
demonstrated the benefits of this approach for exploring
multi-dimensional data by a quantitative evaluation and
three case studies.
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