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I. COMPARING DIFFERENT SIMILARITY MEASURES

In this paper, we tried multiple measures for quantifying the association between different blended
colors of one class, including color similarity, luminance similarity, hue similarity, and name similarity.
Color Similarity(CS) is calculated by 1 — CD(c;, ¢;), where CD(c;, ¢;) is a normalized CIEDE2000
color difference [8].This metric often resulted in colors with a small color distance but significant
differences in their names. For instance, the pink and grey colors in [Figure T}a exhibit high color
similarity (CS(" ,°") = 0.61) despite their distinct appearances. The Luminance Similarity(LS) is
calculated by 1—0.01%LD(c;, cj), where LD is the absolute difference between two colors’ luminance
values in CIE Lab space. However, large luminance similarity does not necessarily indicate a strong
association between colors, as shown in [Figure I}b, the colors of components exhibit highly similar
luminance(LS(" ,®) = 0.70, LS(", @) = 0.92, LS(©,®) = 0.78), yet grouping them into a single
class poses a challenge. Hue Similarity(HS) is calculated by 1 — HD(c;,¢;)/180, where HD is the
absolute difference between two colors’ hue values in CIE Lab space. However, a high hue similarity
does not guarantee similar colors. For example, as shown in [Figure T}c, the green color has a similar
hue to the brown color(H S(©, @) = 0.83), but people often find it challenging to associate the two
colors together.

Based on these attempts, we finally decided to use the name similarity as the final similarity measure.
As shown in [Figure T}d, the blue class is more easily distinguishable using name similarity compared
to the other metrics, due to the stronger association between the names of the blended colors.

II. DETAILED DISCUSSION OF THE RESULTS

We assessed the effectiveness of our approach against benchmark conditions (traditional alpha
blending, local color blending, and hue-preserving blending) using colors from the Tableau-10 scheme
or Colorgorical through three crowdsourced experiments. To color-code the stimuli, we randomly
selected subsets of two, three, or four colors from the corresponding palette to assign to the classes in
the stimuli. This random selection process ensured a diverse range of color combinations, providing a
comprehensive evaluation of our approach’s performance across different color schemes.

Each participant completed a total of 72 stimuli, consisting of 3 classes X 3 smoothness levels X
2 benchmarks x 2 repetitions, with 2 repetitions corresponding to Colorgorical and Tableau palettes.
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Fig. 1: The optimization results by using different similarity measures for S(c;, ¢;).

This design ensured that each palette was equally compared with our method, allowing for a balanced
assessment of our approach’s effectiveness in different color environments.

In this study, we use Tableau to represent designer-crafted palettes and Colorgorical to represent auto-
generated palettes. Our comparative analysis demonstrates that the results generated by our algorithm are
superior in several aspects to the existing designer-crafted and auto-generated palettes. Specifically, our
approach consistently achieved lower error rates and faster response times, highlighting its effectiveness
in providing clear and efficient visualizations.

A. Results for Distribution Estimation
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Fig. 2: Results for the Distribution Estimation Task, including effect sizes and significance tests for our
method against the benchmarks. Error bars (1 ~ 95%CI), p-value, and significance level are calculated
from the Mann-Whitney test. Effect size is calculated using Cohen’s d

Fig presents the results for this task in comparison with benchmarks using the Colorgorical
palette. Our proposed method surpasses the benchmarks characterized by fixed color and opacity
assignment, in both error rate and response time. Notably, our algorithm significantly outperforms
certain benchmark conditions(Local) in reducing error rate. Although the difference is not pronounced,
our algorithm still maintains an advantage in terms of time efficiency compared to other methods.

It also showcases the results for this task compared with benchmarks using the Tableau palette. Specif-
ically, our optimization achieved a significantly reduced error rate compared to certain benchmarks
(Hue-preserving). While our optimization does not significantly outperform all the other benchmarks

in terms of error rate and response time, it still holds a slight advantage in terms of overall results.



B. Results for Class Discrimination
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Fig. 3: Results for the Class Discrimination Task

The results are depicted in In comparison with colors sampled from the Colorgorical
palette, the error rate with our optimization method consistently remained lower than that of the fixed
assignment strategy.

It also presents the results for this task. Our proposed method surpasses the benchmarks that utilize
colors sampled from the Tableau palette, characterized by fixed color and opacity assignment, in
both error rate and response time. Notably, our algorithm significantly outperforms all benchmark
conditions (Standard, Local, Hue-preserving). This demonstrates the robustness of our approach in
class discrimination tasks, particularly when compared with designer-crafted palettes like Tableau.

C. Results for User Preference

For each comparison, we assigned a score of 1 if the participant preferred our approach and -1 for
preferring one of the other benchmarks. Zero was assigned for a neutral choice when the participant
indicated no clear preference. The results are depicted in with a positive score indicating a
preference for our technique.

Compared with colors sampled from the Colorgorical palette, our method appears preferable to Hue-
preserving, and comparable to the other two benchmarks (Standard, Local). As for the Tableau palette,
our optimization has a slight advantage over all three benchmarks (Standard, Local, Hue-preserving).
However, none of these comparisons reached statistical significance. This indicates that in terms of
aesthetics, our approach is likely similar to the benchmarks, suggesting that our method maintains
visual appeal while enhancing other aspects of visualization.
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Fig. 4: Results for the User Preference Task. A preference score greater than 0 indicates that participants
prefer our method over the respective benchmark.



III. VISUALIZING IRIS DATASET WITH SEMI-TRANSPARENT OVERLAPPING HISTOGRAMS

To further explore the potential of our proposed method, we conducted this case study on the well-
known Iris dataset [2]], to compare the distribution difference of the four variables: sepal width, sepal
length, petal width, and petal length. The histogram is first calculated by 25 bins (see [Figure 5}a) and
then colorized with the Tableau 10 palette. Following the online course for overlapping histograms
with Matplotlib in Python [6], we set the opacity of each color to 0.5. As shown in [Figure 35}b, with
the setting of the same opacity and default color assignment, the distribution of sepal width(the green
class) is hard to discriminate, due to the similar appearance to the mixed color from petal length(blue
class) and sepal length(yellow class). The gray color from petal width(red color) and petal length(blue
class) are very distinctive from the surrounding colors.
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(a) Input Palette (b) Random Color Assignment, (c) CNA
& Data Distributions Rendering Order & Same Opacity

Fig. 5: Visualizing the Iris dataset [2] with the overlapping histogram. With the input palette and data
distributions (a), apply the default color assignment and the same opacity to the histogram (b); using
our method, we automatically generate optimal color, opacity, and rendering order (c). Our optimization
result achieves better readability of the overlapping histograms.

Our optimization result avoids these problems, as shown in [Figure 5}c, we can see that our opti-
mization removes the false colors by optimizing the color, hence the purple class, i.e., the petal length
class, can be easily distinguished. Our algorithm also has a clear distribution for each class.

IV. VISUALIZING CIFAR100 DATASET WITH CLUSTER-ENCAPSULATING HULLS

Cluster-encapsulating hulls are often used as an alternative for scatterplot visualizations [1], [7],
as they allow a better perception of the distribution of whole clusters. However, due to the potential
overlapping of complex shapes, this kind of visualization may lead to ambiguous colors [3]. To illustrate
the applicability of our method in this domain, we generated cluster-encapsulating hulls from four
CIFAR100 object classes [4]]. As shown in [Figure 6}a, we first colorized the hulls using the Tableau-10
palette with random color assignment. Using a fixed opacity of ov = 0.5 (see [Figure 6}b, the distribution
of the green class becomes ambiguous, especially for parts overlapping with the red class. Applying a
local color blending model (Figure 6-c) improves the depth order perception, but still does not reduce
false colors. Using our optimization, the optimal color and opacity assignments reduce false colors.
For example, the different parts of the orange cluster are easier to discriminate, as compared with a
randomly assigned green color in [Figure 6}b & c. The extent of clusters is now more clear with our
method (Figure 6}d), and the visualization overall can be read with minimal ambiguity.

V. PALETTES AND HISTOGRAMS USED IN THE EVALUATION

We developed a collection of 18 multi-class overlapping histograms, each consisting of two, three,
or four classes. As shown in these histograms exhibited a diverse array of characteristics,
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Fig. 6: Visualizing the CIFAR100 dataset with cluster-encapsulating hulls. (a) Input cluster-
encapsulating hulls for each class; (b) applying random color assignment and uniform opacity(0.5)
with standard alpha blending model to the hulls, leading to many false colors; (c) using local color
blending model does not reduce false colors; (d) our optimal colors, opacity settings, and rendering
order, make the shape distribution of each class easy to figure out, while also ensuring good color
separability for all segments.

encompassing varying degrees of distribution smoothness and overlap. To color-code these histograms,
we employ color palettes obtained equally from Tableau[9] and Colorgorical[3]], ensuring a balanced
application between the two sources. We maintain a uniform opacity of 0.5 and a consistent rendering
order to simulate typical usage scenarios. Depending on the number of classes in the histogram, we
randomly select sub-palettes comprising two, three, or four colors. The stimuli corresponding to the four
comparison methods—standard alpha blending, local color blending, hue-preserving color blending,
and our color-name aware optimization (CNA)—are presented in |Figure 7| [Figure 8| |Figure 9, and
respectively. The first three benchmark methods use the same palette, uniform opacity of
0.5 and consistent rendering order, compared with our optimized results (CNA), allowing a direct
comparison of how each blended method handles the color coding of overlapping histograms.
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Fig. 7: Stimuli used in the evaluation section, generated with both Tableau and Colorgorical palettes,
applying a uniform opacity of 0.5 and consistent rendering order, based on the standard alpha blending
model.
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Fig. 8: Stimuli used in the evaluation section, generated with both Tableau and Colorgorical palettes,
applying a uniform opacity of 0.5 and consistent rendering order, based on the local color blending
model.
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Fig. 9: Stimuli used in the evaluation section, generated with both Tableau and Colorgorical palettes,
applying a uniform opacity of 0.5 and consistent rendering order, based on the hue-preserving color
blending model.
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Fig. 10: The stimuli used in the evaluation section, generated by our color-name aware optimization
(CNA). This approach automatically determines optimal settings for color, transparency, and rendering
order to produce the final visualizations, ensuring clear discriminability of all segments while enhancing
the perception of the whole from its constituent parts. The palettes displayed beneath each histogram
are rendered using the auto-generated colors along with their corresponding opacity settings.
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