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Abstract
Graph anomaly detection faces significant challenges due to the

scarcity of reliable anomaly-labeled datasets, driving the develop-

ment of unsupervised methods. Graph autoencoders (GAEs) have

emerged as a dominant approach by reconstructing graph struc-

tures and node features while deriving anomaly scores from recon-

struction errors. However, relying solely on reconstruction error

for anomaly detection has limitations, as it increases the sensitiv-

ity to noise and overfitting. To address these issues, we propose

Graph Evidential Learning (GEL), a probabilistic framework that

redefines the reconstruction process through evidential learning.

By modeling node features and graph topology using evidential

distributions, GEL quantifies two types of uncertainty: graph uncer-

tainty and reconstruction uncertainty, incorporating them into the

anomaly scoring mechanism. Extensive experiments demonstrate

that GEL achieves state-of-the-art performance while maintaining

high robustness against noise and structural perturbations.

CCS Concepts
• Information systems→ Data mining; • Computing method-
ologies → Anomaly detection; Neural networks.
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1 Introduction
Anomaly detection focuses on identifying objects that significantly

deviate from the majority within a dataset [10]. With the rapid pro-

liferation of relational data driven by the Internet, graph-structured

data has become a natural representation for modeling complex,

interconnected systems. This has led to growing interest in Graph

Anomaly Detection (GAD), which aims to detect anomalous nodes

within large-scale graphs. GAD has diverse applications in fields

such as fraud detection [64], network intrusion prevention [16], and

the identification of abnormal behaviors in social networks [57],

biological systems [24], and financial transactions [12].

Despite its practical importance, labeled data in graph settings

is often scarce compared to the vast scale of interaction data, mak-

ing supervised approaches infeasible in most scenarios. Manual

labeling of anomalies is not only expensive and time-consuming

but also impractical due to the high diversity and rarity of anoma-

lous behaviors. These have driven the adoption of unsupervised

methods for GAD, enabling adaptive and scalable solutions that

can generalize across various anomaly types and datasets.

Existing unsupervised methods for GAD predominantly rely

on reconstruction-based approaches, where autoencoders are
commonly employed to learn low-dimensional representations of

graph data. The central hypothesis is that autoencoders capture

the core structure of normal nodes, while anomalies, due to their

sparsity and distinctiveness, are poorly reconstructed, resulting

in higher reconstruction errors. GAEs, which incorporate Graph

Neural Networks (GNNs) to encode both topological structures and

node attributes, have shown promise in detecting anomalies within

large, complex graphs [41].

However, existing anomaly detection methods based on recon-

struction error exhibit several limitations, as illustrated in Figure 1.

On one hand, most reconstruction-based methods assume that nor-

mal nodes can be accurately reconstructed, while anomalous nodes

cannot. However, in real-world scenarios, these methods are prone

to overfitting, allowing anomalous nodes to be reconstructed with

https://doi.org/10.1145/3711896.3736989
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Figure 1: Introducing Uncertainty for anomaly detection.
Relying on reconstruction error, nodes 3 and 4 in the graph
are misclassified without introducing uncertainty.

high accuracy, thereby evading detection. On the other hand, these

methods typically rely on predefined reconstruction error threshold

to distinguish between normal and anomalous nodes. In practical

applications, this approach is highly sensitive to inherent noise in

graph data and reconstruction models, such as inconsistencies in

node features or errors in structural encoding. As a result, high-

noise normal nodes may fail to be accurately reconstructed, leading

to their misclassification as anomalies.

To overcome these challenges, we propose shifting the paradigm

of graph anomaly detection from relying on reconstruction error

to explicitly modeling uncertainty. This approach aims to address

the shortcomings of sensitivity to noise and overfitting, enabling

the model to express high uncertainty when encountering anom-

alies. However, integrating uncertainty into graph reconstruction

introduces two fundamental challenges:

• Uncertainty Diversity. There exist diverse sources of uncer-
tainty in reconstruction: (1) Graph uncertainty, which arises

when anomalies disguise themselves by interacting frequently

with normal nodes or mimicking their features, creating incon-

sistencies in local topological information; (2) Reconstruction un-

certainty, which occurs when the reconstruction model, trained

predominantly on normal data, encounters anomalies that lie

outside the training distribution. Effective anomaly detection re-

quires a unified approach to capture both sources of uncertainty.

• Modality Heterogeneity. Graph data inherently combines

continuous node features and discrete topological struc-
tures, each following distinct distributional characteristics. Node

features are often modeled as continuous distributions in high-

dimensional spaces, while topological structures are discrete and

binary, representing edge presence or absence. Estimating uncer-

tainty for these heterogeneous modalities requires differentiated

modeling strategies while simultaneously capturing their inter-

dependencies within the unified graph structure.

To address the aforementioned challenges simultaneously, we

propose Graph Evidential Learning (GEL), a novel framework that

integrates uncertainty modeling for graph anomaly detection.

To address Uncertainty Diversity, we adopt a higher-order

evidential distribution to parameterize the reconstruction process.

Instead of separately modeling different sources of uncertainty (e.g.,

using Monte Carlo Dropout or training multiple models to estimate

prediction variance [1]), we directly learn a unified evidential dis-

tribution for graph reconstruction. This approach eliminates the

need for task-specific uncertainty estimation techniques, enabling

a more efficient and generalizable anomaly detection framework.

The higher-order evidential distribution generates a set of lower-

order reconstruction likelihood functions, thus encapsulating both

graph and reconstruction uncertainty simultaneously. By leverag-

ing Bayesian inference, we parameterize this evidential distribu-

tion without requiring extensive sampling, as typically required by

Bayesian Neural Networks.

To address Modality Heterogeneity, we introduce two eviden-

tial distributions to model the uncertainties in continuous node fea-

tures and discrete topological structures, respectively. Specifically,

we employ a Normal Inverse-Gamma (NIG) distribution to repre-

sent the reconstruction distribution of continuous node features

and a Beta distribution to model the reconstruction distribution

of discrete topological structures (i.e., the presence or absence of

edges between nodes). These two higher-order evidential distribu-

tions jointly govern the reconstruction of the graph, enabling us

to capture the interdependencies between features and structures

in a principled manner. Neural networks are used to parameterize

these evidential distributions, allowing efficient sampling of the

reconstruction likelihoods for both modalities.

Our key contributions can be summarized as follows:

• We propose a novel paradigm for GAD by shifting from recon-

struction error to uncertainty modeling, enhancing the robust-

ness of anomaly detection in noisy graph data. To comprehen-

sively capture the various sources of uncertainty, we model un-

certainty using a higher-order evidential distribution.

• We handle the diverse modality of node features and topological

structures through a joint evidential distribution.

• Extensive experiments on five datasets demonstrate that GEL

achieves state-of-the-art performance in GAD. Ablation studies

show that GEL is notably more robust in unsupervised settings.

2 Related Works
2.1 Graph Anomaly Detection
Anomaly detection has been applied in fields like financial fraud

detection [26] and network security [59]. Traditional methods, in-

cluding statistical techniques and distance-based approaches like

k-nearest neighbors (k-NN)[40], isolation forests[20], and PCA[28],

detect anomalies based on statistical deviations but struggle with

high-dimensional or non-Euclidean data [50]. Deep learning ap-

proaches, such as autoencoders [45], VAEs[39], and RNNs[48], cap-

ture patterns in high-dimensional data but overlook the relational

structure in graphs, limiting their anomaly detection capability.

GNNs [34] excel at utilizing graph structure for anomaly detec-

tion [30]. For example, Mul-GAD [43] integrates node attributes

and structure, while Kumagai et al. [35] address class imbalance
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using semi-supervised GCNs. AddGraph [68] leverages temporal

GCNs for dynamic GAD. However, these methods often require

substantial labeled data, which is scarce [44]. Unsupervised ap-

proaches, such as structure-based methods [60], distance-based

methods like Node2Vec [25], and subgraph-based techniques [63],

detect anomalies by analyzing graph topology and local subgraphs.

Spectral and density-based methods, like LOF [9], detect anomalies

based on graph irregularities [27]. Deep learning-based methods,

including GAEs [32], reconstruct graph structures to detect anom-

alies based on reconstruction errors [21]. Variants like VGAEs [32]

and GraphGANs [69] enhance robustness. Methods such as DOMI-

NANT [18] and GAD-NR [54] extend GAEs by reconstructing node

neighborhoods.

However, traditional GAEs face two main issues: reliance on

reconstruction error, making them sensitive to noise, and inability

to handle overfitting samples, leading to misclassification. We ad-

dress these challenges by introducing uncertainty as an anomaly

criterion to improve robustness and reliability.

2.2 Uncertainty Quantification
Uncertainty Quantification (UQ) has become essential for improv-

ing the reliability and interpretability of neural network predic-

tions [11], especially in safety-critical areas like autonomous driv-

ing [46], healthcare [49], and finance [7]. Bayesian Neural Networks

(BNNs) were an early approach to UQ by assigning prior distribu-

tions to model parameters and enabling posterior inference [8].

However, their practical use is limited by high-dimensional infer-

ence intractability, computational costs of methods like variational

inference, and challenges in choosing priors with limited domain

knowledge [22].

Ensemble methods, including MCDropout [23] and Deep Ensem-

bles [37], offer an alternative by leveraging diverse predictions from

multiple models. While effective, they incur high computational

overhead and face challenges in maintaining ensemble diversity,

particularly in resource-limited settings.

Evidential Learning provides a more efficient UQ alternative by

directly modeling uncertainty via higher-order distributions over

predictions [58]. In regression, it uses a Normal-Inverse-Gamma

distribution to model Gaussian parameters [3], and in classification,

it employs the Dirichlet distribution for class probabilities [58].

Unlike BNNs and ensembles, evidential learning enables efficient

uncertainty estimation in a single forward pass, making it suitable

for real-time applications. It has been applied successfully in image

classification [58], regression [3], multi-view learning [42], and

OOD detection [14].

Building on this, we introduce evidential learning to unsuper-

vised graph representation learning by modeling graph topology

and node features as a joint higher-order evidential distribution,

enhancing uncertainty assessment in graph reconstruction.

3 Preliminaries
3.1 Problem Definition

Attributed Graph. An attributed graph consists of nodes, their

attributes, and the relations (edges) among them [54]. Formally,

G = {V, E,X}, where V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is the set of 𝑁 nodes,

E = {𝑒𝑖 𝑗 | 𝑣𝑖 and 𝑣 𝑗 are connected} is the edge set, and X ∈ R𝑁×𝑑

is the feature matrix, where each row x𝑖 ∈ R𝑑 represents the 𝑑-

dimensional attributes of node 𝑣𝑖 . The edge set E can be represented

by an adjacency matrix A ∈ N𝑁×𝑁
, where A𝑖 𝑗 = 1, if 𝑒𝑖 𝑗 ∈ E, and

0 otherwise. The degree matrix D ∈ N𝑁×𝑁
is a diagonal matrix

where D𝑖𝑖 =
∑𝑁

𝑗=1
A𝑖 𝑗 , and D𝑖 𝑗 = 0, ∀𝑖 ≠ 𝑗 . Here, D𝑖𝑖 denotes the

degree of node 𝑣𝑖 , with off-diagonal entries being zero.

Unsupervised GraphAnomaly Detection. Given an attributed graph
G, the node set V is divided into two disjoint subsets: the anoma-

lous node setV𝑎 and the normal node setV𝑛 , such thatV𝑎∩V𝑛 = ∅
and V𝑎 ∪ V𝑛 = V . The goal of unsupervised graph anomaly de-

tection is to assign anomaly labels for all nodes by estimating the

probability 𝑝 (𝑣𝑖 ∈ V𝑎 | G, 𝑣𝑖 ∈ V), which represents the likelihood
that node 𝑣𝑖 is anomalous, given the graph G = {V, E,X}.

3.2 Reconstruction with GAE
An autoencoder (AE) compresses high-dimensional data into a la-

tent representation via an encoder and reconstructs it through a

decoder. AEs capture normal data properties, with large reconstruc-

tion errors indicating anomalies. This extends to GAEs, where the

encoder uses a GNN to incorporate node features and topology.

Given a graph G = {V, E,X}, the encoder is:
Z = Enc(G) = GNN(X,A), (1)

where Z ∈ R𝑁×𝑑 ′
is the latent representation, with each Z𝑖 ∈ R𝑑

′

corresponding to node 𝑣𝑖 ∈ V , and𝑑′ ≪ 𝑑 . To capture higher-order

neighbor information, GNNs stack multiple graph convolution lay-

ers. At layer 𝑙 , node embeddings H(𝑙 )
are updated by aggregating

neighbor information:

H(𝑙+1) = 𝜎

(
ÃH(𝑙 )W(𝑙 )

)
, (2)

where Ã = D− 1

2 (A + I)D− 1

2 is the normalized adjacency matrix

with self-loops, and W(𝑙 )
is the weight matrix. The output H(𝐿)

is

the compressed representation Z.
Feature Reconstruction. The decoder reconstructs node fea-

tures by taking Z as input and outputting X̂ ∈ R𝑁×𝑑
. The decoder

Dec𝑓 is a multi-layer perceptron (MLP):

X̂ = Dec𝑓 (Z) = MLP(Z) . (3)

Topology Reconstruction. To reconstruct the graph topol-

ogy, the decoder predicts the adjacency matrix A by estimating

edge presence. For nodes 𝑖 and 𝑗 , the decoder Dec𝑡 computes the

probability of an edge as:

Â = Dec𝑡 (Z) = 𝜎
(
Z⊤Z

)
, (4)

where 𝜎 (𝑥) = 1

1+𝑒−𝑥 is the sigmoid activation function.

We adopt Mean Squared Error (MSE) for optimizing both feature

and topology reconstruction.

4 Methodology
Figure 2 illustrates the basic framework of GEL. In Section 3.2, we

introduced the decoders Dec𝑓 and Dec𝑡 designed to reconstruct

node features and graph topology from the latent embedding Z.
However, these neural network-based decoders lack a measure of

confidence in the reconstruction process, which can lead to unreli-

able outputs. To address this limitation, we propose an evidential

framework, which decouples the graph reconstruction process into

two stages: (1) generating evidence for graph components, and (2)

deriving reconstruction results based on evidence.
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Figure 2: The overview of the GEL framework. GEL models high-order evidential distribution to calculate feature uncertainty
and topology uncertainty during the graph reconstruction process, leveraging these uncertainties for anomaly detection.

4.1 Learning the Evidence and Uncertainty
4.1.1 Feature Evidence. In traditional graph autoencoders, decoders
directly output a point estimate for each node feature, but such

estimates fail to capture the inherent uncertainty of predictions. We

propose modeling node feature estimates as continuous distribu-

tions to reflect this uncertainty. Specifically, we assume a Gaussian

prior N0 (𝝁,𝝈2) for the node feature X.

To model the uncertainty of the Gaussian parameters 𝝁 and

𝝈2
, we adopt a second-order probabilistic framework. We place a

Gaussian prior on the mean 𝝁, and an Inverse-Gamma prior on the

variance 𝝈 , as follows:

𝝁 ∼ N(𝜸 ,𝝈2𝝂−1), 𝝈2 ∼ 𝚪
−1 (𝜶 , 𝜷),

whereN(·) denotes a Gaussian distribution, and Γ−1 (·) refers to an
Inverse-Gamma distribution. The hyperparameters 𝜸 , 𝝂 , 𝜶 , and 𝜷
are all of the same size as the feature matrix X ∈ R𝑁×𝐷

, and encode

the evidence supporting the Gaussian distribution N0. Specifically,

we have 𝜸 ∈ R, 𝝂 > 0, 𝜶 > 1, and 𝜷 > 0. For clarity, we denote the

hyperparameters corresponding to a specific node’s feature vector

X𝑖ℎ in X by using their non-bold versions: 𝜇, 𝜎 , 𝛼 , 𝛽 , 𝛾 , and 𝜈 .

We aim to estimate the posterior distribution𝑞(𝜇, 𝜎2) = 𝑝 (𝜇, 𝜎2 |X𝑖ℎ).
To approximate the true posterior [51], we assume that the distri-

bution can be factorized as 𝑞(𝜇, 𝜎2) = 𝑞(𝜇)𝑞(𝜎2), which allows

us to efficiently model it using the Normal-Inverse-Gamma (NIG)

distribution, a conjugate prior for the Gaussian. The joint density

function of the NIG distribution is given by:

𝑝 (𝜇, 𝜎2 | 𝛾, 𝜈, 𝛼, 𝛽 ) = 𝛽𝛼
√
𝜈

Γ (𝛼 )
√

2𝜋𝜎2

(
1

𝜎2

)𝛼+1

exp

{
− 2𝛽 + 𝜈 (𝛾 − 𝜇 )2

2𝜎2

}
,

(5)

where Γ(·) represents the Gamma function.

The parameters of this conjugate prior can be interpreted as

"virtual observations," hypothetical data points used to estimate

specific properties [17].

Remark 4.1. In the NIG distribution, 𝜇 is estimated from 𝜈 virtual
samples with a mean of 𝛾 , while 𝜎2 is inferred from 𝛼 virtual samples
with a sum of squared deviations proportional to 𝜈 . Larger 𝜈 and 𝛼
indicate stronger evidential support, reducing uncertainty in the prior.

This interpretation allows us to quantify the confidence in the

reconstructed feature distribution by linking the hyperparameters

𝛾 , 𝜈 , 𝛼 , and 𝛽 to virtual observations. Using the NIG distribution,

we define two types of uncertainty:

• Reconstruction Uncertainty: This measures the variance of

𝜇 in N0, reflecting the model’s uncertainty in reconstruction,

defined asU 𝑓

reconst
=

𝛽

𝜈 (𝛼−1) .

• Graph Uncertainty: This represents the expected value of 𝜎2

in N0, expressed as U 𝑓

graph
=

𝛽
𝛼−1

, capturing inherent graph

randomness.

These uncertainties reflect both the data’s inherent randomness

and the model’s ability to reliably reconstruct it.

4.1.2 Topological Evidence. For topology reconstruction, traditional
decoders use a sigmoid function to predict the presence of an edge

𝑒𝑖 𝑗 between nodes 𝑣𝑖 and 𝑣 𝑗 , providing a point estimate in the range

[0, 1]. However, this approach fails to quantify prediction uncer-

tainty. To address this, we model the existence of edge 𝑒𝑖 𝑗 using a

Bernoulli distribution B(𝑝𝑖 𝑗 ), where 𝑝𝑖 𝑗 is the edge’s probability,
and 𝒑 represents the probability of all edges in E existing.

We adopt Subjective Logic (SL) [29] to quantify uncertainty in

the Bernoulli distribution. SL extends Dempster-Shafer Theory

(DST) [15] by using a Dirichlet distribution to formalize belief

assignments, enabling a rigorous application of evidential theory

to quantify evidence and uncertainty. Following CEDL [2], we

leverage SL to define a probabilistic framework for topological

reconstruction based on topological evidence.
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Proposition 4.1. A Beta distribution parameterized by evidence
variables can represent the density of probability assignments for
discrete outcomes, effectively modeling both second-order probabilities
and associated uncertainties.

To disentangle reconstruction results from uncertainty, we intro-

duce two positive evidence variables, E𝑖 𝑗 and Ē𝑖 𝑗 , for each potential

edge (𝑖, 𝑗), where E𝑖 𝑗 represents the evidence supporting the edge’s
existence and Ē𝑖 𝑗 represents the evidence against it, with both be-

ing positive. We propose to model the probabilities 𝑝𝑖 𝑗 as a Beta

distribution:

𝑝 (𝑝𝑖 𝑗 | 𝜀𝑖 𝑗 , 𝜀𝑖 𝑗 ) =
Γ (𝜀𝑖 𝑗 + 𝜀𝑖 𝑗 )
Γ (𝜀𝑖 𝑗 )Γ (𝜀𝑖 𝑗 )

𝑝
𝜀𝑖 𝑗 −1

𝑖 𝑗
(1 − 𝑝𝑖 𝑗 )𝜀𝑖 𝑗 −1, (6)

where 𝜀𝑖 𝑗 = E𝑖 𝑗 + 1 and 𝜀𝑖 𝑗 = Ē𝑖 𝑗 + 1 are the Beta parameters.

The evidence strength for edge (𝑖, 𝑗), called Beta strength, is

given by:

𝑆𝑖 𝑗 = 𝜀𝑖 𝑗 + 𝜀𝑖 𝑗 , (7)

indicating that a larger 𝑆𝑖 𝑗 reflects more information about the edge,

whether supporting or opposing its presence. The predicted edge

probability is 𝑝𝑖 𝑗 =
𝜀𝑖 𝑗
𝑆𝑖 𝑗

.

To quantify the uncertainty in topological reconstruction, we

define two complementary measures:

• Reconstruction Uncertainty: This measures the uncertainty

from the reconstruction process, reflecting the model’s confi-

dence in predicting edge presence or absence. It is inversely

proportional to the Beta strengthU𝑡
reconst

= 1

𝑆𝑖 𝑗
.

• Graph Uncertainty: This captures inherent uncertainty in the

graph structure, arising from conflicting or imbalanced evidence

about edge existence. It is defined as:

U𝑡
graph

= (𝑏𝑖 𝑗 + ¯𝑏𝑖 𝑗 )
(
1 −

��𝑏𝑖 𝑗 − ¯𝑏𝑖 𝑗
��

𝑏𝑖 𝑗 + ¯𝑏𝑖 𝑗

)
, (8)

where 𝑏𝑖 𝑗 =
E𝑖 𝑗
𝑆𝑖 𝑗

and
¯𝑏𝑖 𝑗 =

Ē𝑖 𝑗
𝑆𝑖 𝑗

represent the belief masses

supporting and opposing edge 𝑒𝑖 𝑗 , respectively. This measure

reflects the balance between the evidence for and against the

edge’s existence. Higher graph uncertainty indicates balanced

evidence, while lower uncertainty occurs with a clear belief in

the edge’s presence or absence.

By incorporating evidence variables and leveraging the Beta

distribution, this framework allows us to disentangle predictions

and uncertainties, making the reconstruction process more robust

to graph variability and reconstruction ambiguity.

4.2 From the Evidence to Reconstruction
We now integrate feature and topology reconstruction into a uni-

fied evidential framework utilizing the evidence learned from the

latent embeddings Z. Given the embeddings obtained from the

GAE encoder in Section 3.2, we model the joint distribution of the

reconstructed graph as:

𝑝 (𝝁,𝝈2, p | Z) =
𝑁∏
𝑖=1

𝐷∏
ℎ=1

𝑝 (𝜇𝑖ℎ, 𝜎2

𝑖ℎ
| Z𝑖 )

𝑁∏
𝑖=1

𝑁∏
𝑗=1

𝑝 (𝑝𝑖 𝑗 | Z𝑖 ,Z𝑗 ), (9)

where 𝝁 and 𝝈2
represent the mean and variance of node features,

and p denotes the edge existence probabilities. 𝑝 (𝜇𝑖ℎ, 𝜎2

𝑖ℎ
| Z𝑖 )

models the distribution for the ℎ-th feature of node 𝑣𝑖 , and 𝑝 (𝑝𝑖 𝑗 |
Z𝑖 ,Z𝑗 ) models edge existence.

We model uncertainty in feature and topology reconstructions

using the NIG and Beta distributions (Equations 5 and 6). To param-

eterize these, we use two neural networks 𝑓𝜃1
and 𝑓𝜃2

to estimate

the distribution parameters directly from Z:

[𝜸 ,𝝂,𝜶 , 𝜷] = 𝑓𝜃1
(Z), [𝜺, 𝜺] = 𝑓𝜃2

(Z) .
Here, 𝑓𝜃1

outputs the parameters𝜸 (mean),𝝂 (degree of freedom),

𝜶 , and 𝜷 (scale parameters) for the NIG distribution, and 𝑓𝜃2
outputs

the evidence parameters 𝜺 and 𝜺 for the Beta distribution. Please
refer to Appendix D for detailed implementation.

With the learned evidential parameters, we express higher-order

distributions encapsulating both reconstruction and associated un-

certainties. For feature reconstruction with the NIG distribution,

the mean of 𝜇𝑖ℎ estimates X𝑖ℎ :

Feature Reconstruction: X̂𝑖ℎ = E[𝜇𝑖ℎ ] = 𝛾𝑖ℎ . (10)

For topology reconstruction with the Beta distribution, the mean

of p𝑖 𝑗 estimates A𝑖 𝑗 :

Topology Reconstruction: Â𝑖 𝑗 = E[𝑝𝑖 𝑗 ] =
𝜀𝑖 𝑗

𝜀𝑖 𝑗 + 𝜀𝑖 𝑗
, (11)

4.3 Optimization
We define the joint evidential distribution 𝑝 (𝝁,𝝈2, p | Z) in Equ 9.

The optimization process is framed as a multi-task learning problem

with two objectives: (1) maximizing model evidence to enhance

reconstruction accuracy, and (2) minimizing evidence for incorrect

predictions to enforce uncertainty when the model is wrong.

4.3.1 Data Perturbation. In unsupervised graph reconstruction,

using a fixed graph for evidential learning can lead to overfitting,

particularly in uncertainty modeling, undermining anomaly detec-

tion. To improve generalization and ensure reliable uncertainty

estimates, we introduce perturbations to node features and graph

topology during each training iteration. Specifically, we add Gauss-

ian noise to node features: x̃𝑖 = x𝑖 + n𝑖 , where n𝑖 ∼ N(0, 𝜎2I).
For topology, we apply dropout to the adjacency matrix using a

random mask M, where 𝑀𝑖 𝑗 ∼ Bernoulli(1 − 𝑝), resulting in the

perturbed adjacency matrix Ã = A ⊙ M. These perturbations ex-

pose the model to diverse data variations, mitigating overfitting

and improving uncertainty estimation for anomaly detection.

4.3.2 Maximizing Reconstruction Fit. To maximize the likelihood

of the observed graph data, we utilize the evidential distributions for

feature and topological reconstruction. For feature reconstruction,

the negative log-likelihood (NLL) loss is defined as:

LNLL

𝑓
=

𝑁∑︁
𝑖=1

𝑑∑︁
ℎ=1

(
1

2

log

(
𝜋

𝜈𝑖ℎ

)
− 𝛼𝑖ℎ log(Ω𝑖ℎ )

+
(
𝛼𝑖ℎ + 1

2

)
log

(
(𝑋𝑖ℎ − 𝛾𝑖ℎ )2𝜈𝑖ℎ + Ω𝑖ℎ

)
+ log

(
Γ (𝛼𝑖ℎ )

Γ
(
𝛼𝑖ℎ + 1

2

) ))
(12)

where Ω𝑖ℎ = 2𝛽𝑖ℎ (1 + 𝜈𝑖ℎ). Please refer to Appendix A for detailed

derivation. Similarly, for topological reconstruction, the NLL loss

is:

LNLL

𝑡 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
Aij log(

𝑆𝑖 𝑗

𝜀𝑖 𝑗
) + (1 − Aij ) log(

𝑆𝑖 𝑗

𝜀𝑖 𝑗
)
)
, (13)

where 𝑆𝑖 𝑗 is the Beta strength as defined in Equ 7.
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4.3.3 Minimizing Evidence for Errors. To penalize incorrect recon-

structions, we minimize evidence strength in regions with high

error, preventing evidence from becoming excessively large, which

could lead to NaN or Inf values during training. For topological

reconstruction, this is achieved by minimizing the Kullback-Leibler

(KL) divergence between the predicted Beta distribution and the

non-informative prior Beta(1, 1):

LR

𝑡 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

|A𝑖 𝑗 −
𝜀𝑖 𝑗

𝜀𝑖 𝑗 + 𝜀𝑖 𝑗
| ·KL[Beta(𝜀𝑖 𝑗 , 𝜀𝑖 𝑗 ) ∥ Beta(1, 1)] . (14)

For feature reconstruction, instead of using KL divergence with a

zero-evidence prior, we penalize the predicted evidence based on

reconstruction error:

LR

𝑓
=

𝑁∑︁
𝑖=1

𝑑∑︁
ℎ=1

|𝑋𝑖ℎ − 𝛾𝑖ℎ | · (2𝜈𝑖ℎ + 𝛼𝑖ℎ) . (15)

This loss discourages large evidence values when prediction errors

are high, promoting increased uncertainty in regions with poor

predictions.

4.3.4 Multi-task Learning Framework. We combine the two objec-

tives into a unified multi-task learning framework, with the total

loss defined as::

L = 𝜆1LNLL

𝑓
+ 𝜆2LNLL

𝑡 + 𝜆3LR

𝑓
+ 𝜆4LR

𝑡 , (16)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 are hyperparameters balancing the contribu-

tion of each objective. This framework optimizes both feature and

topology reconstruction while accounting for uncertainty in both.

4.4 Anomaly Detection
We define the anomaly score of a node 𝑣 based on uncertainties from

the GAE, where a higher score indicates the node is more likely to

be anomalous. To improve robustness, we combine uncertainty with

reconstruction error. Given modality heterogeneity, GEL introduces

parameters 𝜆g, 𝜆r, 𝜆f, and 𝜆t to balance these factors. The anomaly

score 𝑦𝑣 is:

𝑦𝑣 =𝜆f (𝜆gU
𝑓

graph
+ 𝜆rU 𝑓

reconst
) + 𝜆t (𝜆gU𝑡

graph
+ 𝜆rU𝑡

reconst
)

+ |X𝑣 − X̂𝑣 | +
∑︁

𝑗∈𝑁 (𝑣)
|A𝑣 𝑗 − Â𝑣 𝑗 |,

where 𝑁 (𝑣) denotes the neighbors of 𝑣 .

4.5 Analysis
To validate the effectiveness of uncertainty quantification in graph

anomaly detection, we conduct experiments on the Cora dataset

to test two hypotheses: (1) uncertainty measures are effective for

identifying anomalies, and (2) incorporating uncertainty improves

detection performance. We trained the Graph Evidential Learning

(GEL) model, excluding nodes from each of the seven classes to cre-

ate artificial anomalies, and computed normalized anomaly scores

based on the model’s uncertainty estimates. The model assigned

significantly higher uncertainty to anomalous nodes compared to

in-distribution nodes (Figure 3a), confirming the first hypothesis.

To test the second hypothesis, we compared GEL against a baseline

reconstruction error-based model, GCNAE [32]. The results (Fig-

ure 3b) show that GEL’s uncertainty-based detection outperforms

Ca
se

-B
as

ed
Re

as
on

in
g

Ge
ne

tic
Al

go
rit

hm
s

Ne
ur

al
Ne

tw
or

ks
Pr

ob
ab

ilis
tic

M
et

ho
ds

Re
in

fo
rc

em
en

t
Le

ar
ni

ng Ru
le

Le
ar

ni
ng

Th
eo

ry

The class of "anomalous nodes"

Case-Based
Reasoning

Genetic
Algorithms

Neural
Networks

Probabilistic
Methods

Reinforcement
Learning

Rule
Learning

Theory

Th
e 

cla
ss

 o
f n

od
es

0.68 0.32 0.1 0.19 0.14 0.13 0.16

0.2 0.65 0.26 0.23 0.31 0.16 0.36

0.11 0.3 0.82 0.27 0.14 0.16 0.34

0.39 0.19 0.31 0.7 0.37 0.13 0.11

0.15 0.36 0.13 0.23 0.72 0.26 0.31

0.19 0.31 0.35 0.11 0.33 0.77 0.32

0.18 0.34 0.13 0.23 0.37 0.19 0.66
0.0

0.2

0.4

0.6

0.8

1.0

(a) GEL: uncertainty estimates.

Ca
se

-B
as

ed
Re

as
on

in
g

Ge
ne

tic
Al

go
rit

hm
s

Ne
ur

al
Ne

tw
or

ks
Pr

ob
ab

ilis
tic

M
et

ho
ds

Re
in

fo
rc

em
en

t
Le

ar
ni

ng Ru
le

Le
ar

ni
ng

Th
eo

ry

The class of "anomalous nodes"

Case-Based
Reasoning

Genetic
Algorithms

Neural
Networks

Probabilistic
Methods

Reinforcement
Learning

Rule
Learning

Theory

Th
e 

cla
ss

 o
f n

od
es

0.55 0.39 0.1 0.22 0.16 0.14 0.17

0.24 0.51 0.32 0.27 0.37 0.18 0.45

0.11 0.37 0.77 0.32 0.16 0.18 0.42

0.49 0.23 0.38 0.58 0.46 0.13 0.12

0.17 0.45 0.14 0.27 0.61 0.31 0.38

0.23 0.37 0.43 0.11 0.4 0.7 0.4

0.21 0.42 0.14 0.28 0.46 0.22 0.52
0.0

0.2

0.4

0.6

0.8

1.0

(b) GCNAE: reconstruction error.

Figure 3: Heatmaps of average normalized anomaly scores
on the Cora dataset. Rows correspond to the class omitted
during training (anomalous class), columns represent the
class labels during testing.

the baseline, which solely relies on reconstruction error. This high-

lights that traditional models may overfit and lack a mechanism to

quantify uncertainty, while GEL’s evidential framework improves

anomaly detection by reducing overfitting.

5 Experiments
5.1 Experimental Setup

Datasets. We conduct experiments on five publicly available and

popular real-world graph datasets to evaluate the effectiveness and

generalizability of GEL in anomaly point detection tasks. These

datasets span a diverse range of domains, including social media

(Weibo and Reddit), entertainment (Disney and Books), and corpo-

rate communication (Enron), demonstrating the broad applicability

of our approach. Please refer to Appendix C for more details.

Baselines and Metrics. Following BOND [41], we select nineteen

baseline anomaly detection models for comparison. The baseline

models include non-graph-based methods such as LOF [9], IF [4],

and MLPAE [55], as well as clustering and matrix factorization-

based anomaly detection algorithms like SCAN [60], Radar [38],

and ANOMALOUS [52]. Furthermore, we compared GEL with

other models employing graph neural networks, such as Anomaly-

DAE [21], GCNAE [33], DOMINANT [19], GAD-NR [54], G3AD [6],

MuSE [31], OCGIN [65], and adversarial learning-based GAAN [13]

and contrastive learning-based CONAD [61]. For detailed descrip-

tion, please refer to Appendix B. Consistent with [54, 67], we evalu-

ate anomaly detection performance using the Area Under the ROC

Curve (AUC) and Recall@K metrics
1
.

5.2 Performance Comparison (RQ1)
We evaluate anomaly detection on five datasets. Best-performing

models are highlighted in bold, and the best results among base-

lines are underlined. ‘OOM_C’ indicates models that ran out of

GPU memory. Detailed results are presented in Tables 1 and 2. Key

observations include:

• GEL significantly outperforms other methods on four out of five

datasets in both AUC and Recall@K. Specifically, GEL achieves

an average AUC improvement of 4.64% over the best baseline,

demonstrating its effectiveness in capturing representational and

1
The code is available on https://github.com/wuanjunruc/GEL.
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Table 1: Results on Weibo, Reddit, Disney, Books, Enron datasets w.r.t AUC.

Algorithm Weibo Reddit Disney Books Enron

LOF 56.5 ± 0.0 (56.5) 57.2 ± 0.0 (57.2) 47.9 ± 0.0 (47.9) 36.5 ± 0.0 (36.5) 46.4 ± 0.0 (46.4)

IF 53.5 ± 2.8(57.5) 45.2 ± 1.7(47.5) 57.6 ± 2.9(63.1) 43.0 ± 1.8(47.5) 40.1 ± 1.4(43.1)

MLPAE 82.1 ± 3.6(86.1) 50.6 ± 0.0(50.6) 49.2 ± 5.7(64.1) 42.5 ± 5.6(52.6) 73.1 ± 0.0(73.1)

SCAN 63.7 ± 5.6(70.8) 49.9 ± 0.3(50.0) 50.5 ± 4.0(56.1) 49.8 ± 1.7(52.4) 52.8 ± 3.4(58.1)

Radar 98.9 ± 0.1(99.0) 54.9 ± 1.2(56.9) 51.8 ± 0.0(51.8) 52.8 ± 0.0(52.8) 80.8 ± 0.0(80.8)

ANOMALOUS 98.9 ± 0.1(99.0) 54.9 ± 5.6(60.4) 51.8 ± 0.0(51.8) 52.8 ± 0.0(52.8) 80.8 ± 0.0(80.8)

GCNAE 90.8 ± 1.2(92.5) 50.6 ± 0.0(50.6) 42.2 ± 7.9(52.7) 50.0 ± 4.5(57.9) 66.6 ± 7.8(80.1)

DOMINANT 85.0 ± 14.6(92.5) 56.0 ± 0.2(56.4) 47.1 ± 4.5(54.9) 50.1 ± 5.0(58.1) 73.1 ± 8.9(85.0)

DONE 85.3 ± 4.1(88.7) 53.9 ± 2.9(59.7) 41.7 ± 6.2(50.6) 43.2 ± 4.0(52.6) 46.7 ± 6.1(67.1)

AdONE 84.6 ± 2.2(87.6) 50.4 ± 4.5(58.1) 48.8 ± 5.1(59.2) 53.6 ± 2.0(56.1) 44.5 ± 2.9(53.6)

AnomalyDAE 91.5 ± 1.2(92.8) 55.7 ± 0.4(56.3) 48.8 ± 2.2(55.4) 62.2 ± 8.1(73.2) 54.3 ± 11.2(69.1)

GAAN 92.5 ± 0.0(92.5) 55.4 ± 0.4(56.0) 48.0 ± 0.0(48.0) 54.9 ± 5.0(61.9) 73.1 ± 0.0(73.1)

GUIDE OOM_C OOM_C 38.8 ± 8.9(52.5) 48.4 ± 4.6(63.5) OOM_C

CONAD 85.4 ± 14.3(92.7) 56.1 ± 0.1(56.4) 48.0 ± 3.5(53.1) 52.2 ± 6.9(62.9) 71.9 ± 4.9(84.9)

G3AD 95.1 ± 1.35(96.5) 62.1 ± 0.22(63.1) 65.3 ± 1.7(67.6) 54.0 ± 4.2(58.7) 72.39 ± 2.9(75.4)

MuSE 89.7 ± 4.1(95.3) 53.7 ± 3.0(57.1) 67.3 ± 1.5(69.1) 64.3 ± 2.1(66.8) 64.0 ± 3.77(68.2)

OCGIN 73.2 ± 2.8(76.2) 51.8 ± 1.9(53.4) 56.1 ± 1.5(57.7) 64.4 ± 2.5(67.8) 54.1 ± 1.8(56.5)

GAD-NR 87.71 ± 5.39(92.09) 57.99 ± 1.67(59.90) 76.76 ± 2.75(80.03) 65.71 ± 4.98(69.79) 80.87 ± 2.95(82.92)

GEL 89.32±3.36 (92.92) 62.76±2.42(64.20) 78.21±4.94(82.48) 70.79±3.16(74.20) 82.34±2.93(85.76)

Table 2: Results on Weibo, Disney, Enron datasets w.r.t Recall@K.
Dataset MLPAE SCAN Radar GCNAE DONE AdONE GAAN GUIDE CONAD GAD-NR GEL

Weibo (Recall@500) 51.82 ± 0.22 11.53 ± 0.00 53.60 ± 0.00 52.74 ± 0.60 42.94 ± 5.29 48.30 ± 3.09 53.14 ± 0.39 OOM_C 26.28 ± 4.12 60.22 ± 2.67 65.53 ± 5.23
Disney (Recall@50) 32.86 ± 12.66 39.29 ± 0.00 39.29 ± 0.00 47.14 ± 12.04 43.57 ± 4.16 37.14 ± 5.80 40.71 ± 6.62 40.00 ± 2.67 21.43 ± 0.00 67.85 ± 4.10 78.57 ± 2.70
Enron (Recall@1000) 9.84 ± 4.11 7.38 ± 0.00 12.57 ± 0.00 8.20 ± 0.73 8.52 ± 4.19 2.13 ± 2.58 9.18 ± 1.31 OOM_C 10.38 ± 0.00 15.23 ± 1.41 20.00 ± 3.94
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structural information in graph data. By quantifying uncertainty

in graph reconstruction, GEL uncovers hidden anomalous pat-

terns and achieves robust anomaly detection.

• GEL shows substantial improvements on the Reddit and Books

datasets, with AUC increases of 7.1% and 6.3%, respectively. The

low anomaly rates (less than 3.5%) in these datasets highlight

GEL’s precision in handling imbalanced data distributions.

• GAE-based methods (e.g., AnomalyDAE, DOMINANT, GCNAE,

DONE) generally surpass traditional methods (LOF, IF, MLPAE,

SCAN) due to their ability to learn key features and capture

complex graph relationships. Traditional methods require man-

ual feature selection, challenging in high-dimensional datasets,

and often generalize poorly. For example, LOF detects anomalies

based on local density but fails to identify attribute-based anom-

alies. Similarly, GEL employs graph reconstruction and quantifies

uncertainty to effectively handle complex data structures and

reveal inherent uncertainties.

5.3 Ablation Study
Modality heterogeneity in graph reconstruction challenges GEL

to integrate uncertainties from both node features and topological

structures. To assess the impact of uncertainties in different modal-

ities on GEL’s performance, we conducted an ablation study with

two variants: 1) w/o feature: GEL disregards uncertainty in node

attributes by removing the feature evidence estimate, relying solely

on topological structure uncertainty for anomaly detection. 2) w/o
topology: GEL ignores uncertainty in the topological structure by

removing the topology evidence estimate, using only node attribute

uncertainty for anomaly detection.

Figure 5 presents our key observations: 1) GEL achieves optimal

performance when uncertainties from both modalities are consid-

ered; removing any modality results in a noticeable performance

decline. 2) The performance degradation is more pronounced when

the feature modality is omitted, indicating that uncertainty in node

attributes plays a critical role in anomaly detection. This suggests

that node attributes provide richer information, enhancing the

model’s capability to detect anomalies.

5.4 Parameter study
5.4.1 Impact of Latent Dimension 𝑑′. Figure 4 illustrates GEL’s per-
formance on the Weibo and Disney datasets as the latent dimension

𝑑′ increases. We observe that performance improves with larger 𝑑′,
enabling the model to capture more reconstruction evidence and

leading to a more accurate high-order evidential distribution, thus

enhancing uncertainty quantification.

For the Weibo dataset, performance increases as 𝑑′ grows from 8

to 128; for the Disney dataset, it improves from 8 to 16. This differ-

ence likely stems from the varying node feature dimensions: Weibo

has 400-dimensional features, whereas Disney has 28-dimensional
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Figure 6: Changes of AUC and Recall@K as the level of data disturbance increases.
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Figure 7: Impacts of weights on diverse uncertainty.

features. Datasets with higher-dimensional node features require

larger latent dimensions to capture richer evidence.

However, when 𝑑′ exceeds optimal values, performance declines

due to overfitting. Overfitting is particularly detrimental in self-

supervised models like GEL, as it leads to capturing noise and

irrelevant details, reducing performance. GEL, based on a GAE

architecture, aims to capture essential node information for un-

certainty quantification; an excessively large 𝑑′ may hinder its

generalization ability.

5.4.2 Impact of 𝜆r and 𝜆g. As detailed in Section 4.4, GEL models

uncertainty through reconstruction uncertainty (𝑈reconst), reflect-

ing the amount of evidence in reconstruction, and graph uncertainty

(𝑈
graph

), representing the imbalance or adversarial nature of the evi-

dence. We examine the impact of the weights 𝜆r and 𝜆g by adjusting

them accordingly.

Figure 7(a) and (b) illustrate that on the Weibo dataset, GEL

achieves optimal performance when 𝜆r = 0.7 and 𝜆g = 0.3. This

indicates that anomaly detection on Weibo relies more on recon-

struction uncertainty, with moderate graph uncertainty aiding in

handling adversarial evidence. A higher weight on reconstruction

uncertainty allows the model to capture sufficient evidence for

constructing a high-order evidential distribution, while a moderate

weight on graph uncertainty helps manage the adversarial aspects

effectively. In contrast, on the Reddit dataset, the best performance

occurs when 𝜆r = 0.5 and 𝜆g = 0.5, suggesting that equal considera-

tion of both uncertainties is beneficial. This finding implies that the

optimal weighting of uncertainties is influenced by dataset char-

acteristics and anomaly patterns. Specifically, anomalies in Weibo

involve insufficient evidence, emphasizing reconstruction uncer-

tainty, whereas anomalies in Reddit are more affected by evidence

conflicts. These results demonstrate the flexibility and effectiveness

of GEL in handling different anomaly patterns through the two

types of uncertainty.

5.4.3 Impact of 𝜆f and 𝜆t. We evaluated the effect of varying 𝜆
f

and 𝜆t on GEL’s performance using the Weibo and Reddit datasets.

As shown in Figure 7(c) and (d), GEL achieves optimal performance

on Weibo when 𝜆
f
= 0.8 and 𝜆t = 0.2, whereas on Reddit, the best

performance occurs at 𝜆
f
= 0.6 and 𝜆t = 0.4.

These results indicate that a higher 𝜆
f
makes anomaly detection

more reliant on feature uncertainty estimates (𝜸 , 𝝂 , 𝜶 , 𝜷 ), which
is beneficial for datasets with significant feature uncertainty dif-

ferences. Conversely, a higher 𝜆t emphasizes topology uncertainty

estimates (𝜺, 𝝐), aiding in scenarios with pronounced topology un-

certainty differences.

The differing optimal weights suggest that the importance of fea-

ture and topology uncertainties varies across datasets, highlighting

the need to balance 𝜆
f
and 𝜆t according to dataset characteristics.

5.4.4 Impact of 𝜆1, 𝜆2, 𝜆3 and 𝜆4. We conducted experiments on

multi-task training weights (𝜆1, 𝜆3), setting 𝜆2 = 1 − 𝜆1 and 𝜆4 =

1 − 𝜆3 for efficiency. Results on Weibo show optimal performance

at 𝜆1 = 0.7 and 𝜆3 = 0.3 (AUC: 89.22 ± 3.21), with similar patterns

across other datasets.

Table 3: AUC Results for Different 𝜆1 and 𝜆3 on Weibo
𝜆3\𝜆1 0.1 0.3 0.5 0.7 0.9

0.1 82.02 ± 1.19 84.51 ± 3.17 84.93 ± 1.33 86.14 ± 0.22 86.28 ± 1.57

0.3 81.85 ± 3.24 83.93 ± 2.59 85.86 ± 3.29 89.22 ± 3.21 88.49 ± 2.54

0.5 79.76 ± 2.72 82.41 ± 3.52 85.02 ± 2.43 87.57 ± 2.70 88.24 ± 0.83

0.7 80.09 ± 2.08 83.13 ± 2.55 82.69 ± 1.95 84.16 ± 0.39 85.11 ± 3.01

0.9 79.22 ± 1.21 81.67 ± 1.96 83.57 ± 2.85 84.40 ± 3.12 83.61 ± 2.47

5.5 Robustness Study
To evaluate robustness, we compared GEL with baselines under

varying levels of noise and structural perturbations. Introducing

increasing levels of noise to node features (Figure 6(c) and (d)),

we observed that while performance declined in all models due to
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their reliance on feature quality, GEL exhibited significantly less

degradation than the baselines.

Similarly, we assessed the models under different proportions of

edge dropout (Figure 6(a) and (b)). At a dropout rate of 10%, GEL

and most baselines showed improved Recall@K, likely due to the

regularization effect enhancing generalization [53]. However, as

dropout rates increased further, performance declined in all mod-

els. Notably, under higher dropout conditions, GEL’s performance

degradation was much smaller compared to GAD-NR.

GEL’s robustness arises from its construction of high-order evi-

dential and reconstruction distributions by capturing evidence from

multiple dimensions to quantify uncertainty. This enables GEL to

better handle missing or noisy data, maintaining relatively stable

performance even under significant perturbations.

5.6 Complexity Analysis
GEL’s computational complexity is comparable to standard GAE

models with minimal additional overhead. We provide analysis

from theoretical, implementation, and experimental perspectives.

From a theoretical perspective, GEL’s complexity remains in line

with standard GAEs:

• Encoder: 𝑂 (𝐸 · 𝑍 + 𝑁 · 𝑍 · 𝐷) – identical to standard GAEs.

• Feature evidence network (𝑓𝜃1
): 𝑂 (𝑁 · 𝑍 · 𝐷) – comparable

to feature decoder in GAEs.

• Topology evidence network (𝑓𝜃2
):𝑂 (𝐸 · 𝑍 · 𝐷) – comparable

to topology decoder in GAEs.

• Uncertainty computation:𝑂 (𝑁 ·𝐷+𝐸) – negligible additional
cost.

Where 𝑁 is the number of nodes, 𝐸 is the number of edges, 𝑍 is

the latent dimension, and 𝐷 is the feature dimension. The compu-

tational bottleneck remains in the encoder part, which is identical

to standard GAE models.

The primary difference in GEL’s decoder is outputting distribu-

tion parameters instead of point estimates, which adds negligible

overhead in modern GPU-accelerated frameworks due to paral-

lelization.

We compared training and inference times with the recent GAD-

NR method based on GAE, which is a strong baseline. The results

are shown in Tables 4 and 5.

Table 4: Training Time Comparison

Algorithm Weibo Reddit Disney Books Enron

GAD-NR 1m51s 1m24s 57s 1m12s 1m16s

GEL 2m1s 1m29s 1m5s 1m22s 1m24s

Table 5: Inference Time Comparison

Algorithm Weibo Reddit Disney Books Enron

GAD-NR 12s 11.1s 4.2s 6.2s 10.6s

GEL 16.5s 14.8s 5.8s 8.7s 12.3s

We also evaluated GEL on the large-scale DGraphFin dataset

(3.7M nodes, 4.3M edges) and compared it with the GAD-NR. The

results are shown in Table 6.

Table 6: Performance on DGraphFin Dataset

Method AUC Recall@10000 Training Inference Memory

GAD-NR 69.93 45.46 35m39s 7m57s 21.9GB

GEL 74.57 51.34 41m34s 8m9s 23.5GB

These results show that GEL maintains a 6.64% higher AUC

than GAD-NR at million-node scale, requires only 17% more train-

ing time, and operates within the memory constraints of a single

NVIDIA RTX 3090 GPU (24GB).

6 Conclusions and Limitations
We introduced Graph Evidential Learning (GEL), a novel framework

that shifts graph anomaly detection from relying on reconstruction

error to modeling uncertainty. GEL addresses the challenges of

uncertainty diversity and modality heterogeneity by employing

higher-order evidential distributions for both node features and

topological structures. GEL quantifies both graph uncertainty and

reconstruction uncertainty, enhancing robustness against noise and

overfitting. Extensive experiments on benchmark datasets demon-

strate that GEL achieves state-of-the-art performance.

While GEL advances graph anomaly detection through uncer-

tainty modeling, our framework is currently oriented towards

static graphs with fixed structures and attributes; extending GEL

to dynamic graphs where topology and features evolve over time

presents an avenue for future work. Lastly, although we employ

specific evidential distributions tailored to continuous and discrete

modalities, these choices may not capture all types of uncertainties

in diverse datasets. Exploring alternative or more flexible evidential

distributions could further enhance GEL’s ability to detect a wider

variety of anomalies.
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A Derivation of LNLL
𝑓

In this subsection, we derive the negative log-likelihood loss for

feature (ie. Eq. 12) of a NIG distribution. For convenience, we omit

the subscript 𝑖ℎ of the hyperparameters 𝛾,𝜐, 𝛼, 𝛽 and denote them

as as m. We have:

𝑝 (X𝑖ℎ |m)

=

∫
𝜃

𝑝 (X𝑖ℎ |𝜃 )𝑝 (𝜃 |m) 𝑑𝜃

=

∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞
𝑝 (X𝑖ℎ |𝜇, 𝜎2)𝑝 (𝜇, 𝜎2 |m) 𝑑𝜇𝑑𝜎2

=

∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞
𝑝 (X𝑖ℎ |𝜇, 𝜎2)𝑝 (𝜇, 𝜎2 |𝛾,𝜐, 𝛼, 𝛽) 𝑑𝜇𝑑𝜎2

=

∫ ∞

𝜎2=0

∫ ∞

𝜇=−∞

[√︂
1
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{
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=

∫ ∞

𝜎2=0

𝛽𝛼𝜎−3−2𝛼
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𝜐 (X𝑖ℎ − 𝛾)2 + 2𝛽 (1 + 𝜐)

)−( 1

2
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which is equivalent to:

𝑝 (X𝑖ℎ |m) = St

(
X𝑖ℎ ;𝛾,

𝛽 (1 + 𝜐)
𝜐 𝛼

, 2𝛼

)
.

St

(
𝑦; 𝜇St, 𝜎

2

St
, 𝜐𝑆𝑡

)
is the Student-t distribution evaluated at 𝑦

with location parameter 𝜇St, scale parameter 𝜎2

St
, and 𝜐St degrees of

freedom. Afterwards, we can compute the negative log likelihood

loss, L𝑖ℎ , for reconstruction X𝑖ℎ as:

L𝑖ℎ = − log𝑝 (X𝑖ℎ |m)

= − log

(
St

(
X𝑖ℎ ;𝛾,

𝛽 (1 + 𝜐)
𝜐 𝛼

, 2𝛼
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,

which has the following derivation:

L𝑖ℎ = 1

2
log

(
𝜋
𝜐

)
− 𝛼 log(Ω) +

(
𝛼 + 1

2

)
log((𝑦 − 𝛾)2𝜐 + Ω)

+ log

(
Γ (𝛼 )

Γ (𝛼+ 1

2
)

)
where Ω = 2𝛽 (1 + 𝜐).

B Baseline Methods
• LOF [9]: Local Outlier Factor measures node isolation by com-

paring its density to k-nearest neighbors using node features.
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• IF [4]: Isolation Forest uses decision trees, scoring anomalies by

their proximity to the root.

• MLPAE [55]: Multi-Layer Perceptron Autoencoder reconstructs

node features, using reconstruction loss as the anomaly score.

• SCAN [60]: Structural Clustering Algorithm for Networks iden-

tifies clusters and labels structurally distinct nodes as anomalies.

• Radar [38]: Radar detects anomalies using attribute residuals

and structural coherence, with reconstruction residuals as the

score.

• GCNAE [33]: Graph Convolutional Network Autoencoder recon-

structs node features and graph structure, using reconstruction

error for anomaly detection.

• DOMINANT [19]: DOMINANT uses a two-layer GCN to recon-

struct features and structure, with combined reconstruction error

as the anomaly score.

• DONE [5]: DONE optimizes node embeddings and anomaly

scores using MLPs in a unified framework.

• AnomalyDAE [21]: AnomalyDAE reconstructs structure and

attributes using a structural autoencoder and attribute decoder.

• GAAN [13]: Graph Anomaly Adversarial Network uses a GAN

framework, combining detection confidence and reconstruction

loss for anomaly scoring.

• GUIDE [62]: GUIDE uses motif-based degree vectors and mirrors

DONE for anomaly detection.

• CONAD [61]: CONAD applies graph augmentation and con-

trastive learning for anomaly detection.

• G3AD [6]: G3AD introduces an adaptive caching module to

guard the GNNs from solely reconstructing the observed data

that contains anomalies.

• MuSE [31]: MuSE uses the multifaceted summaries of recon-

struction errors as indicators for anomaly detection.

• OCGIN [65]: OCGIN is an end-to-end graph outlier detection

model that addresses the "performance flip" phenomenon by

leveraging factors such as density disparity and overlapping

support.

• GAD-NR [54]: Graph Anomaly Detection with Neighborhood

Reconstruction enhances GAE by reconstructing a node’s full

neighborhood, using reconstruction loss to detect anomalies.

C Dataset Overview
The details of these datasets are shown in Table 7.

• Weibo [66]: A directed user interaction network from Tencent-

Weibo. Anomalous users are identified by temporal post patterns.

Features include post location and bag-of-words content repre-

sentation.

• Reddit [36]: A network of user-subreddit interactions on Reddit.

Banned users are anomalies. Features are LIWC-based vectors

from user and subreddit posts.

• Disney [47] and Books [56]: Co-purchase networks for movies

(Disney) and books (Books). Anomalies are based on student

votes (Disney) or Amazon failure tags (Books). Features include

price, review count, and ratings.

• Enron [56]: An email interaction network. Spam-sending email

addresses are anomalies. Features include average email length,

recipient count, and email time intervals.

Table 7: Dataset statistics.

Statistic Weibo Reddit Disney Books Enron

#Nodes 8405 10984 124 1418 13533

#Edges 407963 168016 335 3695 176987

#Features 400 64 28 21 18

#Degree 48.5 15.3 2.7 2.6 13.1

#Anomalies 868 366 6 28 5

Anomaly Ratio 10.3% 3.3% 4.8% 2.0% 0.04%

D Details of Netowrk Implemetation
To ensure compatibility with various GAE-based anomaly detec-

tion methods, we model 𝑓𝜃1
and 𝑓𝜃2

using lightweight Multi-Layer

Perceptrons (MLPs). These networks are designed to output pa-

rameters that align with the prior definitions of their respective

distributions. For 𝑓𝜃1
(·), we use the following architecture:

𝜸 = W3 · Tanh(W𝛾

2
· Tanh(W𝛾

1
Z + b𝛾

1
) + b𝛾

2
) + b𝛾

3
, (17)

𝝂 = ReLU(W𝜈
2
· ReLU(W𝜈

1
Z + b𝜈

1
) + b𝜈

2
), (18)

𝜶 = ReLU(W𝛼
2
· ReLU(W𝛼

1
Z + b𝛼

1
) + b𝛼

2
) + 1, (19)

𝜷 = ReLU(W𝛽

2
· ReLU(W𝛽

1
Z + b𝛽

1
) + b𝛽

2
). (20)

For 𝑓𝜃2
(·), the evidence parameters 𝜀𝑖 𝑗 and 𝜀𝑖 𝑗 for the existence

and non-existence of edge 𝑒𝑖 𝑗 are computed as:

[𝜀𝑖 𝑗 , 𝜀𝑖 𝑗 ] = ReLU(W𝜀
2
· ReLU(W𝜀

1
· concat( [Z𝑖 ,Z𝑗 ]) + b𝜀

1
) + b𝜀

2
) + 1,

(21)

where concat( [Z𝑖 ,Z𝑗 ]) represents the concatenation of the latent

embeddings of nodes 𝑣𝑖 and 𝑣 𝑗 , and the ReLU activation ensures

the non-negativity of the evidence. The final "+1" term ensures

consistency with the definition of the Beta parameters 𝜀𝑖 𝑗 = E𝑖 𝑗 + 1

and 𝜀𝑖 𝑗 = Ē𝑖 𝑗 + 1.
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