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AutoFDP: Automatic Force-based Model Selection
for Multicriteria Graph Drawing

Mingliang Xue, Yifan Wang, Zhi Wang, Lifeng Zhu, Lizhen Cui,
Yueguo Chen, Zhiyu Ding, Oliver Deussen, Yunhai Wang

Abstract—Traditional force-based graph layout models are
rooted in virtual physics, while criteria-driven techniques position
nodes by directly optimizing graph readability criteria. In this
paper, we systematically explore the integration of these two
approaches, introducing criteria-driven force-based graph layout
techniques. We propose a general framework that, based on user-
specified readability criteria, such as minimizing edge crossings,
automatically constructs a force-based model tailored to generate
layouts for a given graph. Models derived from highly similar
graphs can be reused to create initial layouts, users can further
refine layouts by imposing different criteria on subgraphs. We
perform quantitative comparisons between our layout methods
and existing techniques across various graphs and present a
case study on graph exploration. Our results indicate that our
framework generates superior layouts compared to existing
techniques and exhibits better generalization capabilities than
deep learning-based methods.

Index Terms—Graph Layout, Readability Criteria, Optimiza-
tion

I. INTRODUCTION

Graphs serve as fundamental data structures across diverse
domains for representing relationships among entities. A
common approach to visualizing graphs is the node-link
diagram, in which nodes are depicted as points in a two-
dimensional space and edges as connecting lines. A wide
range of layout algorithms has been developed to generate
graph drawings that are both visually coherent and structurally
informative.

Most widely used graph layout algorithms are based on
physical analogies, particularly force-directed models. In
these models, edges—or conceptual links between nodes—are
modeled as springs generating attractive forces, while all
node pairs exert mutual repulsive forces, akin to electrically
charged particles. A layout is considered optimal when these
forces balance out in a state of equilibrium. The diversity
of force formulations has given rise to numerous variants,
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each designed to emphasize different structural features of
graphs. For example, SFDP [1] is effective at revealing
clusters, ForceAtlas2 [2] accurately depicts local neighborhood
structures, and the Stress Model [3]–[5] preserves the overall
structure of a graph. While these methods highlight various
aspects of a graph , finding the appropriate model for a specific
graph can be quite challenging, even formulating the criteria
for its layout in the form of a unified force representation, such
as presented in [6].

Recent advancements in optimization and deep learning
techniques have triggered criteria-driven graph layout tech-
niques that compute node positions by directly optimizing graph
readability criteria [7] such as edge crossing, neighborhood
preservation, and node resolution. For example, SGD2 proposed
by Ahmed et al. [8], [9] directly optimizes a large set of
criteria provided that each of them can be expressed as a
differentiable function. They provide surrogate functions for
non-differentiable criteria, such as number of crossings and
crossing angles. Although experimental results show that SGD2

generates better or comparable results to existing force-based
methods on small graphs, SGD2 suffers two major issues:
i) being inefficient for optimizing real-world graphs and ii)
parameters found by the optimization cannot be reused for other
graphs. Similar to SGD2, which uses these criteria as the loss
function, deep learning-based methods such as DeepGD [10]
and SmartGD [11] train neural network models by using a set
of graphs with various structural characteristics. The obtained
models can then be used to generate layouts for other graphs.
The evaluation of SmartGD indicates that deep learning-based
methods perform comparably or even better than SGD2 when
applied to graphs with similar structures, while also being
significantly faster. However, most of the tested graphs are
limited to small synthetic graphs with less than hundreds of
nodes.

This paper systematically investigates the potential of
extending force-based models to directly optimize layout
readability, aiming to produce graph drawings that outperform
those generated by conventional methods. To this end, we
introduce AutoFDP, a unified framework that combines physics-
inspired force-based modeling with readability-driven layout
optimization. The framework is designed to automatically select
the most suitable force-directed model for a given graph, guided
by a broad set of readability criteria, including the reduction
of edge crossings and the enhancement of crossing angles. Our
framework is designed to satisfy the following requirements:
(i) constructing a layout model in an unsupervised manner
without the training process; (ii) optimizing a model towards
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TABLE I: Design objectives of AutoFDP in comparison to
prior criteria-driven graph drawing techniques.

Technique Force-based W/O Training Non-differentiable Reusable
SGD2 × ✓ × ×

DeepGD × × × ✓
SmartGD × × ✓ ✓
AutoFDP ✓ ✓ ✓ ✓

all quantitative criteria, even if they are non-differentiable; and
(iii) supporting the reuse of a model for other graphs while
ensuring high-quality visualization. As far as we know, these
requirements have not been adopted in any existing layout
technique for exploring node-link diagrams, though some are
met in SGD2 [9] and deep learning-based techniques by Wang
et al. [10], [11].

Built on the quotient-based force representation of Xue et
al. [6] that unifies almost all existing physics-inspired layout
models, our approach automatically searches proper force-based
models for all combined force functions that best meet given
criteria with a bilevel optimization problem [12]. Our search
space covers all force functions parameterized by six continuous
variables (θ = {ωa,αa,βa,ωr,αr,βr}, see section IV). Since
our optimization is based on a subset of force parameters, it is
faster and more robust than SGD2 [9]. In addition, the force-
based models obtained from one graph can be reused for other
graphs that are other graphs that have a kernel-based similarity
greater than or equal to 0.5, and the generated layout can be
refined by interactively changing the model’s parameters or
optimizing subgraphs of interest with different criteria.

In doing so, interactive example-based layout generation of
complex graphs becomes feasible. We refer to this scheme as
a reuse-and-optimization scheme. Table I compares the design
objectives of AutoFDP and existing techniques along three
considerations. SGD2 requires full optimization of each graph,
struggles with large-scale or complex criteria, and can only
handle simple graphs. DeepGD and SmartGD rely heavily on
the similarity of the training data and are only suitable for
cases where suitable training data is available. In contrast,
AutoFDP is superior in terms of computational efficiency,
physical interpretability, and flexibility. Note that our framework
is not limited to the quotient-based force representation; it can
also be integrated with other physics-inspired models, such as
t-force [13].

To illustrate its efficacy, we begin by comparing our approach
with both SGD2 and prevalent force-based layout techniques,
adhering to the same parameters established by SGD2. Our
findings indicate that AutoFDP is the only one to consistently
achieve reasonable layouts across all types of graphs, while
also being significantly faster—up to ten times—than SGD2.
Next, we assess our method against DeepGD and SmartGD, the
deep learning-based approaches with publicly available code.
Here, our method exhibits comparable performance for graphs
that resemble the training dataset in structure, yet it excels
with other types of graphs. Finally, through a case study, we
demonstrate how our framework facilitates the example-based
layout generation of intricate graphs, underscoring its practical
utility.

II. RELATED WORK

Related work falls into two categories: graph layout methods
and example-based layout generation.

A. Graph Layout Methods

A large number of graph layout methods have been proposed
for visualizing graphs as node-link diagrams. Force-directed
layout methods generate graph layouts by simulating one of
two virtual physical models: the spring-electrical model and
the stress model. The spring-electrical model [2], [14] treats
nodes as electrically-charged particles that exert repulsive forces
between all nodes and the edges of the graph as springs, which
exert attractive forces to connected nodes. Using this model,
the classical force-directed placement (FDP) algorithm [2]
defines attractive forces as proportional to the squared distance
between two nodes and repulsive forces reciprocal to their
distance. The resultant force is used to move nodes until
convergence is reached. To reveal different graph structures,
different force variants [15] have been proposed. For example,
Hu [1] introduces a repulsive force weaker at long ranges to
distribute nodes more evenly. Noack [16] suggests using a
constant attractive force and a repulsive force proportional
to the inverse of the distance for clearly separating node
clusters. To balance local structures and clusters, Jacomy et
al. [17] redefine attractive and repulsive forces proportional
and inversely proportional to the distance between nodes.
However, these methods do not directly optimize the distance
between nodes as primary objectives; their preservation emerges
indirectly through force equilibrium.

In contrast, stress models [3], [4] assume that every pair of
nodes in the graph is connected by springs whose lengths are
equal to the shortest path distances in data space. By minimizing
the energy of this spring system, the resulting layout better
reveals the global structure of a graph than spring-electric
models. To reduce its computation cost, some variants evaluate
the model by using a selected subset of springs. For example,
the Sparse Stress Model [18] aggregates long-range springs
using a set of pivot nodes. The Maxent Stress Model [19]
restricts the definition of springs to the k-ring neighborhood
of a node but uses repulsive forces between all node pairs for
uniformly distributing them. It can be seen as a hybrid model,
where the repulsive force is represented as an entropy term
added to the stress model.

The commonly used stress model can be regarded as a
minimization of the stress error, which allows the capture of
the global graph structure. However, optimizing for criteria like
minimizing the number of edge crossings [7] or maximizing
crossing angles [20] is challenging due to their discrete and
non-convex nature. These properties make it difficult to apply
exact optimization methods efficiently. Therefore, different
heuristics [21], [22] have been proposed to achieve them. Bekos
et al. [21] introduce a heuristic algorithm for maximizing the
minimal crossing angle, while Radermacher et al. [22] present
three geometric heuristics for minimizing the number of edge
crossings. However, these heuristic methods cannot be used
for optimizing other criteria. Recently, Ahmed et al. [8], [9]
proposed a general method, SGD2, for directly optimizing
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multiple criteria in a unified manner when each criterion can
be expressed as a differentiable function. Yet, its optimization
directly moves every individual node and hence its optimization
result cannot be explained in terms of force-based models, let
alone manipulated by changing force parameters. In contrast,
our method automatically finds a specific force-based model
for a given graph, where the model can be refined and reused.

Taking readability criteria as the loss function, DeepGD [10]
trains a convolutional graph neural network to generate the
layout for arbitrary graphs once trained. However, it is designed
to optimize differentiable criteria as SGD2 and requires manu-
ally defined surrogate functions for non-differentiable criteria.
SmartGD addresses this issue by using Generative Adversarial
Networks [23] but requires a collection of pre-constructed high-
quality layouts. In contrast, our method enables searches of a
customized force-based model for the input graph to meet the
given criteria without the training procedure.

B. Example-based Layout Generation

For large graphs, computing a layout and evaluating its
aesthetic metrics can be time-consuming, often limiting the
feasibility of interactive exploration. To address this chal-
lenge, Kwon et al. [24] propose a method that retrieves
precomputed layouts for graphs with topologically similar
structures, enabling quick visualization of the expected layout
and significantly reducing the need for expensive real-time
computations. Similarly, Pan et al. [25] introduce an interactive
exemplar-based layout fine-tuning technique, where users
modify the layout of a local subgraph, with these adjustments
automatically transferred to topologically similar subgraphs
and integrated into the entire graph.

Building on the above approaches, we introduce a model
reuse strategy that leverages precomputed force models from
topologically similar graphs to efficiently generate reasonable
layouts for a given graph. Once the layout is generated, users
can refine the layout of subgraphs to meet different aesthetic
criteria by re-running the optimization. In contrast to Fisheye
views [26], [27], which often cause significant distortion to the
global shape, our reuse-and-optimization exploration scheme
provides detailed views of subgraphs while preserving the
overall context without distortion.

III. BACKGROUND

Given a graph G(V,E) with nodes V and edges E, computing
a graph layout means to find the positions X = {x1, · · · ,x|V |}
of all nodes in 2D space with xi ∈ R2. Using these notations,
we first briefly describe the quotient-based force representation
which unifies most existing virtual physics-based graph layout
methods, and then introduce common criteria [7], which we
use to drive the automated selection of layouts.

A. Quotient-based Force Representation

Xue et al. [6] show that most existing graph layout methods
can be formulated as a combination of quotient-based forces
that combine power functions of graph-theoretic distances di j
between two nodes i and j as well as Euclidean distances (in

2D space). Suppose that each node i is subject to a total of l
forces, each force is denoted by Fi,k and the resultant force by
Fi:

Fi,k = ∑
(i, j)∈Ωk

ωk ∗
||xi −x j||αk

dβk
i j

∗ ek,i j, Fi =
l

∑
k

Fi,k (1)

where Ωk is the force range specifying the nodes that exert
forces towards node i, ωk is a weight with a sign deciding
the force type (attractive force vs. repulsive force), ek,i j is
a normalized vector of the force direction, αk and βk are
exponents for graph-theoretic and Euclidean distances between
nodes j and i, determining the force magnitude. For α =−1,
the exponential function is replaced by ln(||xi −x j||),

To ensure the convergence of the layout algorithm, there
should be at least one attractive force (ωk > 0) and one repulsive
force (ωk < 0) and hence l ≥ 2. The force range Ωk can be
E, V 2, or a user-specified node set P. The exponents {αk,βk}
can take many different values, each of which might capture
different graph characteristics. For choosing proper {αk,βk},
Xue et al. [6] further identify and validate two guidelines:

• G1: αk ≥ 0,βk ≥ 0 if ωk > 0; and
• G2: αk ≤ 0,βk ≤ 0 if ωk < 0.

Following these guidelines, users can find {αk,βk} to meet
given requirements. However, it is still a time-consuming
and trial-and-error process. By using this representation as a
proxy for finding the desired layout, our proposed optimization
framework can automatically search proper values {αk,βk}
that reveal different graph structures (e.g., clusters, tree, and
grid) while meeting given criteria (e.g., stress error, crossing
number and etc.). Compared to SGD2, searching this compact
parameter space is more efficient while yielding similar or
even better layouts, see Subsection V-A.

B. Graph Readability Criteria

Here, we briefly describe nine readability criteria [7] to
measure the layout quality and refer to the supplemental
material for complete definitions.

• Normalized stress error (SE) [19] measures the squared
difference of the shortest path distance between node pairs
and their Euclidean distance;

• Ideal Edge Length (IL) computes the variance of the
absolute difference between the length of an edge and its
ideal length (1.0);

• Neighborhood Preservation (NP) measures the similarity
between the k-nearest neighborhoods in the input graph
and those defined within the layout;

• Crosslessness (CL) quantifies the amount of edge cross-
ings, normalized by the maximal possible number of edge
crossings;

• Crossing Angle (CA) measures the average absolute
discrepancy between each crossing angle and the target
crossing angle of π/2;

• Minimum Angle (MA) is defined as the average devia-
tion between the minimum angle θmin(i) between edges
incident to a vertex i and the ideal minimum angle of
2π/deg(i) for all nodes;
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TABLE II: Symbol Description Table

symbol description

X Layout for input graph
ψ(X) Cost of layout for given criteria

Li Cost for each criterion
W = {w1, · · · ,wm} Weights for criteria

θ = {ωa,αa,βa,ωr,αr,βr} Parameters for describing the force model
Xθ Layout obtained by force model present by θ

φ(X,θ) Energy of the force model present by θ for layout X
xi Layout coordinates of node i
di j graphical distance between node i and j
θ ∗ Parameters corresponding to the force

model that minimizes the layout cost
λ and ρ step sizes

∆θ Parameter difference
δθ Parameter perturbations
X̂ Layout perturbations

• Node Resolution (NR) assesses the amount of node
overlap defined as the minimum distance between two
nodes in a layout [28];

• Aspect Ratio (AR) indicates to what extent the bounding
box of a layout approaches a square; and

• Gabriel Graph Property (GP) measures the extent of
a graph to be a Gabriel graph [29] by calculating the
maximum proportion of edges without nodes in their
circles.

For the criterion whose values L are not the smaller the better,
we change them to 1−L to ensure that the scores consistently
show smaller values as being better. In doing so, we take them
as minimization objectives.

By default, AutoFDP employs nine criteria and their com-
binations as optimization objectives. Our method can directly
handle non-differentiable criteria such as CA, NP, and CL,
eliminating the need for differentiable surrogate functions. As
a result, the definitions of these criteria used for optimization
objectives differ from those used in SGD2. Additionally, the
definitions of MA and NR used by DeepGD as objectives are
also distinct from ours. To facilitate a fair comparison with
DeepGD, we implemented their versions of these criteria as
optimization objectives in our method.

IV. OUR APPROACH

Given an input graph and a set of weighted criteria, our
framework aims to find a force-based layout model. This
model dynamically adjusts node positions by optimizing the
weighted combination of criteria, thereby generating layouts
that emphasize the graph characteristics prioritized by the
criteria. Once a suitable model has been identified, it can be
used as a proxy for the specified criteria to determine the
optimal layout for other similar graphs. In addition, users can
interactively refine the layouts of the subgraphs of interest by
performing local optimization. In this section, we first describe
the optimization scheme for searching model parameters, then
elaborate on example-based layout generation. To facilitate
reading, we put the symbol description in Table II.

A. Automated Model Search

To circumvent the computational complexity of directly
optimizing the given criteria in layout, we introduce a force

model where minimizing its system energy efficiently ap-
proximates the minimum criteria layout. We assume that
there are l quotient-based forces in the model, each having
four parameters: force range Ωk, force weight ωk, and force
exponents (αk,βk). For simplicity, we use only two forces
(l = 2) by default: one attractive force (ωa > 0), and one
repulsive force (ωr < 0), both forces are exerted on nodes
in the range Ωk =V 2. While other forces (e.g., label collision)
can be better supported by other choices of Ωk and l, such
adaptations incur significant efficiency costs, which motivates
us to make this restriction. Each model is therefore described
by six parameters: θ = {ωa,αa,βa,ωr,αr,βr}. We obtain these
values by optimizing the given criteria for a given input graph.

Given m weighted criteria, the cost of a layout X is measured
by:

ψ(X) =
m

∑
i

wiLi(X), (2)

where Li(X) is one of the criteria defined by the user and
W = {w1, · · · ,wm} are the weights for all criteria. Our method
approximates ψ(X) by optimizing the energy equation for the
layout model. Once θ is known, the layout X can be obtained
by finding the state of equilibrium induced by the force model,
which corresponds to minimizing the system energy:

Xθ = argmin
X

φ(X,θ), (3)

where φ(X,θ) is the energy term of the Taurus model [6],
which is the primitive function of the Taurus force function in
Equation 1 under the previous assumptions:

φ(X,θ) = ∑
i, j∈V

ωa||xi −x j||αa+1

(αa +1)dβa
i j

+
ωr||xi −x j||αr+1

(αr +1)dβr
i j

. (4)

A desired θ results in a layout X with a minimal value of cost
ψ(X). Therefore, searching θ can be formulated as a unified
optimization problem that combines Equations 2 and 4:

θ
∗ = argmin

θ
ψ(Xθ ). (5)

This can be interpreted as seeking a force-based model with
proper parameters θ that produces an optimal layout X in terms
of the cost ψ . We tackle this problem by iteratively alternating
between updating the layout X and updating θ to improve
layout quality. After initializing θ , we use it to compute Xi+1

and then use Xi+1 to update θ and repeat this process until
reaching convergence. Accordingly, X and θ are updated by:

Xi+1 = Xi −λ
∂φ(Xi,θ i)

∂Xi , (6)

θ
i+1 = θ

i −ρ
∂ψ(Xi+1)

∂θ i , (7)

where λ and ρ are step sizes. Note that we use the layout results
from one iteration rather than the converged layout results as
the X for the bilevel optimization in each iteration. Although
we do not achieve the optimal Xθ i within each iteration, our
iterative optimization ensures an optimal θ when the layout
cost ψ(X) converges.
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By differentiating φ with respect to X, we obtain

∂φ(X,θ)

∂X
=

ωa

2
∗
||xi −x j||αa

dβa
i j

∗ ea,i j +
ωr

2
∗
||xi −x j||αr

dβr
i j

∗ er,i j,

(8)

where ea,i j and er,i j are the normalized attractive and repulsive
force directions, respectively. We update the position of each
node xi by using an augmented stochastic gradient descent
solver (ASGD) [6] with fast convergence. Following Zheng et
al. [30], we exponentially decrease λ from 100 to 0.01, and ρ

follows a similar exponential decrement from 0.2 to 0.05.
Yet, some readability criteria do not have analytical partial

derivatives and hence we use numerical differentiation to solve
the partial derivative of ψ with respect to θ :

∂ψ(Xi+1)

∂θ i =
∂ψ(Xθ i+1)

∂θ i ≈
ψ(Xθ i+δθ )−ψ(Xθ i)

δθ
, (9)

where

Xθ i = Xi (10)

Xθ i+δθ ≈ X̂ = Xi −λ
∂φ(Xi,θ i +δθ)

∂Xi . (11)

Layout X̂ is now generated by adding a small perturbation
to θ . Considering that θ only contains six parameters, the
computational cost of the numerical differentiation is still
acceptable. Some criteria like SE have analytical partial
derivatives, but we found that numerical derivatives do not
show significant differences to analytic ones in our experiments.
To reduce the likelihood of being trapped in local optima, we
adjust δθ using cooling schedules stemming from simulated
annealing [31]. Once the partial derivatives are obtained, θ i+1

is updated according to Eq. 7.

Algorithm 1 Pseudocode for force-based model selection

1: Input: graph G = (V,E), cost ψ

2: X0 = RandomMatrix(|V |,2)
3: θ 0 = RandomVector(|θ |), iter = 0
4: repeat
5: Update Xi+1 with Eq. 6
6: Calculate θ i+1 with Eq. 7
7: iter = iter+1
8: until |ψ(Xi+1)−ψ(Xi)|/ψ(Xi)< ε or iter > maxiter
9: return θ i

Algorithm 1 outlines the alternating optimization: after
initializing θ according to the guidelines (see Section III),
it iteratively updates X and θ until the convergence criterion
(ε = 10−7 in line 8) is satisfied. By choosing an appropriate
decay function for ∆θ , our algorithm converges all the time
during our experiments. Applying two different readability
criteria to the graphs dwt1005 and bus685, Figure 1a and
Figure 1b show the convergence curves generated by using
three decay functions over 30 iterations. The exponential decay
function performs best for both graphs and gradually converges
toward a lower objective value. Figure 1c and Figure 1e show
the generated intermediate layouts of the graphs at the 1st, 15th,
and 30th iterations by minimizing SE and NP, respectively.

Fig. 1: Convergence curves of AutoFDP with different decay
functions and SGD2 on two graphs (a,b) and intermediate
results of the 1st, 15th, and 30th iteration in optimizing SE on
the graph dwt1005 and NP on the graph bus685 by AutoFDP
(c,e) and SGD2 (d,f).

To verify that this optimization selects reasonable force-based
models, we carefully examined the obtained θ in Figure 1c
and Figure 1e . The ideal result of minimizing SE Figure 1c
is a stress model [4], where |αa −αr| are close to |βa −βr|
for balancing graph-theoretic distance and Euclidean distance.
Looking at θ shown on the top left of the sub-figures, we see
that θ at the 15th iteration is reasonable. Although minimizing
NP in Figure 1e does not correspond to any existing force-
based model, the values of βa should be gradually increased
to reduce the attractive forces between nodes, while for βr,
values should be gradually decreased to enhance the repulsive
forces during intermediate iterations. The values of βa and βr
in Figure 1e fit that requirement. In contrast, SGD2 does not
quickly reach the convergence as AutoFDP (see the curves
in Figure 1a and Figure 1b ) and the resulting intermediate
layouts shown in Figure 1d and Figure 1f cannot reveal the
grid and tree-like structures in the two graphs with the same
number of iterations.

In summary, our optimization approach efficiently converges
to a reasonable layout solution with fewer iterations than
conventional methods for the given weighted criteria. More
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results are shown in Subsection V-A.

B. Interactive Example-based Layout Generation

Given a graph with around 5K nodes, finding the proper θ

with algorithm 1 takes around 2 mins in our experiment, which
is too slow for layout generation. On the other hand, even if
θ is rapidly obtained, it is a challenge to manually change θ

to manipulate the layout to meet different readability criteria,
since the influence of θ on the layout is unpredictable. To
address this issue, we use the reuse-and-optimization mentioned
above scheme for efficient layout generation of large graphs, in
which reusing proper pre-computed force models is performed
to provide a clear overview of an input graph. Subsequently, the
user can specify task-related criteria for subgraphs of interest
to refine the layout using local optimization. Figure 2 shows
an example.

Model Reuse. We generate a layout for a given graph by
reusing a force model obtained from a similar graph using the
following three steps: First, for a given graph G∗, we find a
similar graph Gs, where Gs is smaller in size and achieves a
similarity score of at least 0.5 with G∗ based on graph kernel
methods [24], [32]. Next, for a set of optimization objectives
given by the user, we use the optimization method outlined in
algorithm 1 on Gs to pre-compute a set of corresponding force
models and layouts. Finally, after comparing the layouts for
Gs, the user can apply the most appropriate force model get
from the previous step to G∗, resulting in the desired layout
of G∗ for the user. Figure 2a and Figure 2b illustrate two of
the pre-computed layouts of the most similar graph bus494 to
the graph bcspwr07, while the user-desired layout of bcspwr07
in Figure 2c is generated by reusing the force model from
Figure 2a. In the process of obtaining Figure 2c, the layout of
bus494 took 1.38s, the model reuse took 5.88s, the CL value of
Figure 2c was 0.0242. In contrast, Figure 2d shows the result
form directly using AutoFDP[CL] on bcspwr07, which takes
12.61s with CL value of 0.0238. Using model reuse not only
yields a metric value and visually very similar results, but also
takes less time.

Local Optimization. During the exploration of node-link
diagrams, users often perform tasks on subgraphs. For example,
they might be interested in finding the set of adjacent nodes to
a node or exploring the sub-clusters of a large cluster. Although
a task-driven fisheye lens [27] might show structures of interest,
they inevitably change the context. To address this issue, we
propose a context-preserving local optimization technique to
improve the readability of subgraph layout.

Given a layout X of graph G, we allow users to select a
subgraph SG with node positions Xs within a region R and
then impose a task-related function ψs (e.g., NP for exploring
clusters) to SG for adjusting the layout. By initializing SG with
X, we first apply algorithm 1 to SG to generate a layout X′

s and
then employ the iterative closest point (ICP) algorithm [33] to
align the layout X′

s to the reference Xs. Since the optimization
might generate layouts with flipped structures, we flip all
layouts horizontally and vertically to create more variants for
X′

s. Next, we use ICP to find an affine transformation including
translation, rotation, and scaling to map the variants of X′

s to

Fig. 2: Example-based layout generation for bcspwr07 with
AutoFDP. First, the most similar graph bus494 is found, the
pre-computed layouts are shown in (a,b); then unlike (d) which
optimizes CL directly, the corresponding force model of (a) is
reused for generating the layouts (c) of the graph bcspwr07;
(e) refining the layouts of the subgraphs by applying local
optimizations using SE as the criterion.

Xs. Finally, we choose the variant with the smallest cost for
mapping to the reference. Figure 2e shows the refined layouts
after performing local optimizations on Figure 2c, the circle
structure is shown more clearly in Figure 2e.

V. EVALUATION

AutoFDP1, developed in C++ and leveraging the Taurus
library [6], is evaluated against traditional and deep learning
methods to learn if AutoFDP outperforms existing methods
and how deep learning methods perform on real graphs. We
limit our deep learning comparison to deepGD and SmartGD
due to their availability. Thus, comparisons are classified into
non-learning (SGD2 and standard layouts) and learning-based
(deepGD and SmartGD) categories for a balanced analysis,
detailed in Subsection V-A and Subsection V-B respectively.
We run the test on a machine with AMD Ryzen 3990X (64

1https://github.com/IDEASLab-AutoFDP/AutoFDP

https://github.com/IDEASLab-AutoFDP/AutoFDP
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Fig. 3: Quantitative comparison between our method and SGD2: (a,b) Boxplots summarize the difference between the layouts
generated by two methods of optimizing a single criterion (a) and weighted criteria (b). The optimized criterion on each
sub-figure is listed on the top right. The weights of different criteria in weighted criteria are equal, all of which are 0.5.

cores at 2.9GHz) processor and 256GB memory, where our
experiments use up to 6 threads and 1 GB of memory.

A. Comparison to non-learning based methods
We compare our method with SGD2 by optimizing every

single criterion of the nine and six sums of weighted criteria
provided by the original implementation of SGD2. For the
classic layout methods, we choose the stress model (SM)
with a stochastic gradient descent solver [30], SFDP [1],
and Maxent [19], all of them can be formulated within the
quotient-based force representation [6] and correspond to
spring-electrical models, stress models, and a combination
of these two models, respectively. In addition, we include
tsNET [34] and DRGraph [35] which are based on dimensional-
ity reduction techniques and designed for efffciently preserving
neighborhoods. For all these methods, we use implementations
with the default parameters provided by the original authors.

Datasets. For a comprehensive comparison, we incorporate
a number of real-world graphs sourced from a widely used
resource [36], and also generate a set of graphs with common
structures. In all, we use 30 real-world graphs of different
applications (see supplementary material) and 45 synthetic
graphs with sizes varying from 100 to 5000 nodes and 128
to 19,016 edges. The synthetic graphs were generated in the
same way as the synthetic graphs in Taurus [6] and have three
different kinds of structures: grids, binary trees, and clusters,
with each of them having 15 exemplar graphs. For each grid
graph, the ideal desired layout is a uniform grid with a set of
uniform-sized squares; the ideal layout for a binary tree should
preserve the hierarchy, while for a clustered graph the goal is
to maintain the cluster structures.

Measures. We used the nine criteria provided by Ahmed et
al. [9] described in Sec. III-B. We calculate the scores of
our approach (MAutoFDP) and SGD2 (Msgd2) for two layouts
of a given graph for each quality measure and compute the
difference δM:

δM = MAutoFDP −Msgd2 , (12)

where a value around zero indicates that both techniques
produce similar results. Since small values for all measures
are better, a negative δM is better.

Fig. 4: Example layouts generated by three variant of AutoFDP
and the corresponding variant of SGD2 for the four types of
graphs: grid (top row), tree (second row), clustered graph
(third row), and real graph (bottom row). In which blue boxes
represent well-perform layouts and red boxes represent layouts
where structures are not visually represented well.
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Fig. 5: Heatmaps presenting the scores of nine quality measures for layouts generated by eleven layout methods on four types
of graphs. Each row represents a layout method, and each column is a quality measure. All columns are colored relatively with
regard to best and worst value.

Fig. 6: Example layouts generated by six variant of AutoFDP and five force-based methods for the four types of graphs: grid
(top row), tree (second row), clustered graph (third row), and real graph (bottom row). The blue boxes represent well-perform
layouts, the red boxes represent layouts where structures are not visually represented well.

Parameters. The efficiency of our method and the quality
of the layout are affected by four parameters: the maximum
number of iterations, the initial value of θ , the step size ρ

and λ . As suggested by Xue et al. [6] we initialize θ with
(1,1,1,-1,-1,-1) and set the maximum number of iterations to
50.

Comparing with SGD2 The boxplots in Figure 3 summarize
the differences between our method and SGD2 in terms of the
nine criteria. Each sub-figure in Figure 3a corresponds to the
results measured on the layouts produced by optimizing a single
criterion as indicated on the top right. To comprehensively
evaluate layout quality beyond the specific optimization target,
we report performance across multiple criteria. This evaluation
reflects the practical requirement that a useful layout must
maintain good overall readability, not just excel on a single,
user-specified criterion at the expense of others. Taking NP,
MA, and NR as the optimization objective, our method yields
layouts with better performance on almost all measures. For
SE, CL, CA, and AR, our layout results are better or similar
for most measures and slightly worse on one measure. For
example, our results obtained by optimizing SE and CL (see
Figure 3a(1) and Figure 3a(4)) are slightly worse in terms
of the CA and AR measures, respectively. However, their
visual layouts more effectively reveal grid, tree, clusters, and
symmetric structures compared to SGD2 (as shown in the first

four columns of Figure 4). We believe that this is because our
quotient-based force models consider global graph structures
manifested by the shortest path distances between all node pairs.
Yet, our results obtained by optimizing IL and GP show worse
performance on two measures, NP and IL, when optimizing
IL, and on two measures, AR and IL, when optimizing GP.
However, the difference between the two methods is less than
0.1, indicating that both methods perform similarly. After
examining the visual layouts, we observed that both methods
fail to produce meaningful layouts when optimizing IL. For
example, no layout for both methods on binary trees accurately
shows the eight branches of the given graph, which can be
revealed by optimizing SE. For GP, AutoFDP better reveal
graph structures for all kinds of graphs (see the supplemental
material). We hypothesize that this is due to IL and GP only
considering local structure, which is insufficient to capture the
overall graph structure.

For each of the six evaluated weighted criteria—constructed
using an average weighting scheme and criterion combi-
nations selected based on superior and compatible pairs
from SGD2—the layouts produced by AutoFDP consistently
outperform or closely match those generated by SGD2 across
the majority of evaluation metrics. The exceptions are the
layouts optimized for SE and IL (see Figure 3b(1)), which
perform slightly worse in NP and IL; the layout optimized
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for SE and CA (see Figure 3b(4)), which performs slightly
worse in AR. However, in all cases of poorer performance, the
differences are less than 0.1. Despite using this simple uniform
weighting strategy without any graph-specific tuning, after
carefully checking the visual layouts, we are convinced that
our method can show the important graph structures, especially
for real graphs. For instance, as depicted in the fifth and
sixth columns of Figure 4, our method consistently generates
layouts that effectively reveal grid, tree, cluster, and symmetric
structures using these equally weighted criteria combinations.
For a comprehensive view of all the visual layouts, please refer
to the supplemental material.
Comparing with Force-based methods. The heatmaps in
Figure 5 present the average values of nine measures generated
by eleven layout methods for four types of graphs. Each row
corresponds to a layout method and each column corresponds
to one quality measure, where each cell shows the average
measure value with a background color encoding the relative
measure on the same column. Since traditional methods
cannot optimize different criteria, we did not perform a
comprehensive comparison of criteria as we did with SGD2, but
instead selected three important and relevant criteria and their
combination: SE (optimized by SM/MAXENT), NP (focused by
SFDP/tsNET/DRGraph), and CL (well-behaved in DRGraph).

We can see that AutoFDP[SE] and SM perform similarly
and yield similar layouts on all graphs (see the first and seventh
columns in Figure 6). They generate the best SE scores on
all graphs, while tsNET yields good NP scores, especially for
the grid and clustered graphs but performs the worst in SE
and IL for all graphs. Maxent performs the best in IL on all
graphs since it is designed to explicitly maintain uniform edge
lengths, whereas SFDP performs the worst on a few measures
on the grid and behaves similarly on the other types of graphs,
yielding poor performance in SE and AR. DRGraph performs
well on grid in terms of the SE and IL, and it also performs
well on other types of graphs in terms of the NP and CL.
However, it generally performs poorly on other criteria.

In contrast, our methods create a good balance between
optimizing different aspects. For example, AutoFDP[NP] also
attempts to preserve neighborhoods as tsNET but also maintains
overall structures and uniform edge lengths. Although its
yielded IL scores are the third to the last on the binary trees,
clustered and real graphs, its scores are much smaller than
the ones of tsNET and DRGraph. Likewise, AutoFDP[CL]
yields good scores not only in CL but also in SE and IL. The
performance of AutoFDP[SE+CL] is between AutoFDP[SE]
and AutoFDP[CL] in most measures, especially in SE and CL.
The same phenomenon is observed for AutoFDP[SE+NP] and
AutoFDP[NP+CL].

This observation is consistent with visual results shown in
Figure 6, where the layouts of the tree and clustered graphs
yielded by AutoFDP[SE+CL] and AutoFDP[NP+CL] can be
treated as the interpolation between the layouts generated by
AutoFDP[SE] / AutoFDP[NP] and AutoFDP[CL]. Since large
weights can cause certain criteria to have a dominant influence
on the optimization process [9] , sometimes the layouts gener-
ated by optimizing some combined criteria might be similar
to the ones generated by optimizing a specific single criterion.

Fig. 7: For grids (a) and real graphs (b), boxplots (top) sum-
marize the parameters obtained by AutoFDP[NP]. Heatmaps
(bottom) show the resultant force magnitude for two nodes with
varying graph-theoretical and Euclidean distances generated by
applying the median values of six parameters to the quotient-
based force representation.

Fig. 8: Computation time of our method and SGD2 for
optimizing three different criteria in comparison to four
classical methods.

For example, the layouts generated by AutoFDP[SE+CL] and
AutoFDP[CL] on the grid graphs are highly similar.

As shown in Figure 6, SM allows to deliberately show the
grid structure, exhibits the global symmetry of the binary tree
and the real graph fpga-dcop1220, but cannot reveal clusters
in the clustered graph. SFDP keeps the global structure of
grid, clustered graphs and fpga-dcop1220, but fails to show
the symmetry of the binary tree. DRGraph and tsNET do not
allow to unfold the 3D grid and maintain the global symmetry
of the binary tree as well as the real graph fpga-dcop1220,
although they clearly reveal clusters in the clustered graph.
Maxent clearly shows the structure of the 3D grid graph and
fpga-dcop1220 with a uniform node distribution, but cannot
separate all clusters.

Howerver, AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP]
and AutoFDP[SE+CL] can generate reasonable layouts for four
different types of graphs. We speculate that the robustness of
our methods is due to the force model searched for each graph
in terms of the given criteria.

Variation Analysis. To investigate how the obtained force
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models vary with different input graphs, we compute the
statistics for each of the six parameters {ωa,αa,βa,ωr,αr,βr}
obtained by optimizing different criteria on 45 synthetic graphs
and 30 real graphs. For the ones generated by AutoFDP[SE],
their mean values are (1.01,0.99,2.00,-1.02,0.02,0.99) with
variances being close to zero. The parameters of the SM are
(2, 1, 2, -2, 0, 1), which closely align with these means after
normalizing the weights ωa and ωr to (1,-1). Such results
confirm that our optimization can produce accurate results.

However, unlike SE which can be optimized directly with
the stress model, the other criteria like NP cannot be directly
represented in a force-based framework and the parameters
obtained might be largely different in different graphs. The top
row in Figure 7 summarizes the values of these parameters
generated by AutoFDP[NP] on the grid and real graphs using
boxplots. We did not show the parameters for the tree and
clustered graphs, since they are almost the same. We can see
that the variations of αr, βa, and βr are the largest on the
grid graphs and the variation of αa is the largest on the real
graphs. In other words, AutoFDP[NP] attempts to find different
parameters to reveal different graph structures.

To further explore how these parameters influence the forces
on different types of graphs, we compute the resultant force for
the two nodes with varying graph-theoretic measures di j and
Euclidean distance in 2D space ||xi −x j|| by using the median
values of these parameters. The bottom row in Figure 7 shows
the corresponding heatmaps, which show different effective
resultant force ranges on two types of graphs,

where a positive value of the combined force indicates
an attractive force between nodes and a negative value
represents a repulsive force. For grid graphs, nodes with graph-
theoretic distances less than 4 are subject to attractive forces
between them at large Euclidean distances, helping to preserve
neighborhood structure by compressing the sparse grid layout.
In contrast, on real graphs, only nodes with graph-theoretic
distances less than 2 may be subject to attractive forces between
them, but repulsive forces are applied at all other ranges.

Such different behaviors are beneficial to enhance neighbor-
hood preservation, where large repulsive forces are required to
separate the nodes belonging to different k-nearest neighbor-
hood graphs.

Runtime. Figure 8 illustrates the relationship between layout
computation time and the number of graph nodes. To provide
a comprehensive comparison, we include results of AutoFDP,
other C++ based methods (SM, SFDP, Maxent, and DRGraph),
and the most related baseline SGD2. Due to space constraints,
only the curves for the selected variants of AutoFDP and SGD2

are shown here. Direct absolute runtime comparisons between
implementations in different languages (C++ vs. Python for
SGD2 / tsNET) should be interpreted with caution, as they
can be significantly influenced by language efficiency and
optimization levels. The primary purpose here is to show the
scaling trends of each method and provide a ballpark estimate
of the relative computational cost. The computation time for the
shortest path distances is excluded for all methods to ensure a
fairer comparison of the core layout computation. The complete
set of results, including SGD2 and tsNET, is provided in the

supplemental materials.
The results indicate that AutoFDP’s runtime remains con-

sistent across different optimization criteria. Its computation
time is approximately one order of magnitude slower than SM,
SFDP, Maxent, and DRGraph for graphs with more than 1000
nodes, but with the same scaling trend. This is expected, as
AutoFDP jointly optimizes the graph layout model and layout,
whereas the classical methods do not enforce specific aesthetic
criteria. Despite this cost, AutoFDP demonstrates one order
of magnitude speedup over SGD2 on the graph with less than
3000 nodes. For graphs exceeding 3,000 nodes, since SGD2

has a maximum computation time limitation, it may appear to
be closer to our processing time at first glance. However, when
examining the overall trend, our method actually demonstrates
superior performance.

In summary, AutoFDP finds force-based layout models that
adapt to the structures of different types of graph with less
than 1000 nodes in a reasonable amount of time, while existing
layout methods lack this capability. While the search process
on large graphs has a higher computational cost, the optimized
parameters on small graphs can be used to efficiently layout
similar graphs. This makes AutoFDP primarily suitable for
offline analysis, as well as for graph layout tasks where layout
quality is a priority and there are similar small-scale graphs.

B. Comparison to Deep Learning-based Methods

We also conducted a comparative analysis of AutoFDP
against deep learning-based techniques, namely DeepGD [10]
and SmartGD [11]. For our experiments, we used the original
code provided by the authors. Due to the limitation that the
authors only offered code to optimize specific criteria, our
comparison was confined to those criteria available in the
source code. Specifically, the criteria included in the DeepGD
source code are SE, SE+MA, SE+NR, SE+IL, and SE+TSNE,
where the TSNE criterion measures the divergence between the
graph space and the layout space [37]. Conversely, SmartGD
only offered SE and CL as criteria. Since the definition of
MA and NR used by SGD2 is different from the one of
DeepGD, we implemented the criteria of MA, NR, and TSNE
as the optimization objectives for a fair comparison. For each
objective, we retrained the model on the Rome dataset using
the same configuration described in DeepGD and SmartGD
paper, employing a single A100 GPU with 40 GB of memory.

Dataset. To assess the generalization ability of DeepGD and
SmartGD, we constructed two datasets for performing indepen-
dent and identically distributed (IID) and out-of-distribution
(OOD) tests. The IID test includes 1000 graphs randomly
chosen from the Rome dataset using test data selection code in
DeepGD, resembling the structures of the training data, and the
OOD one consists of synthesized graphs with varied structures,
including 50 instances each of grids, binary trees, and clusters.
Since DeepGD was trained on smaller graphs with less than
100 nodes, the synthesized graphs were created with node
counts ranging from 10 to 500. Both DeepGD and SmartGD
utilize 10,000 graphs selected from the Rome dataset as training
dataset. To maintain consistency, we first run AutoFDP on the
same training dataset, then take the average of the force model
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Fig. 9: Mean value and the 95% confidence interval of the
difference between AutoFDP and DeepGD on the Rome dataset
(a) and synthetic graph dataset (b) – lower values are better.
The optimized objective for each sub-figure is provided at the
bottom.

Fig. 10: Layouts generated by AutoFDP (left) and DeepGD
(right) for three graphs: a graph of the Rome dataset (a) and two
real graphs (b,c): dwt419 (b) and rajat11 (c). The optimized
objective on each graph is listed at the top.

parameters as a frozen parameter θ̄ for testing on the test
datasets.

Measures. As described in Subsection V-A, we employed
the criteria provided by Ahmed et al. [9] as the evaluation
metrics and calculated the difference δM (see Eq. 12) between
the scores obtained by AutoFDP in comparison to those of
DeepGD and SmartGD. A negative δM indicates that AutoFDP
outperforms DeepGD, and vice versa. Due to limited space,
we only present the differences in terms of optimized criteria
with confidence interval (CI) in Figure 9 and Figure 11. Please
refer to the supplementary material for comprehensive results.

Comparing with DeepGD. Figure 9 shows the differences be-
tween AutoFDP and DeepGD. On the Rome dataset (Figure 9a),
the mean differences mostly range between [-0.02, 0.02],

Fig. 11: Comparison of AutoFDP and SmartGD on Rome (a)
and synthetic datasets (b). Error bars show the differences for
SE and CL optimization. Example layouts by AutoFDP (left)
and SmartGD (right), with optimized criteria listed at the top.

Fig. 12: Layouts generated by AutoFDP (left), SmartGD (right
in (a) and (b)), and relative neighborhood graph (right in (c))
for three real graphs: ca-GrQc (a), bfwa782 (b), and plskz362
(c). The optimized objective on each graph is listed at the top.

suggesting that both methods produce similar layouts. The
exception is the result for optimizing SE+NR, where our score
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Fig. 13: Generating layout of a new graph with the reuse-and-optimization scheme. (a) Four layouts of the graph VisBrazil
provided by AutoFDP with four different criteria; (b) A layout generated by reusing the force-based model in (a)(1) to the graph
ca-CSphd; (c) Refining the layout by applying AutoFDP[SE] and AutoFDP[MA] to the orange and red subgraphs selected in
(b), respectively.

is marginally worse than DeepGD’s, with mean differences in
NR around 0.11. Upon examining the corresponding visual
layouts, we observed that AutoFDP generates more compact
layouts but effectively reveals the graph structures, similar to
DeepGD, see an example in Figure 10a.

Conversely, on the synthetic data (Figure 9b), the mean
values of almost all criteria for all optimization objectives
are negative, with a mean difference of approximately -
0.2, indicating that our method significantly outperforms
DeepGD. Upon analyzing the generated visual layouts (refer
to the supplementary material), we found that DeepGD results
in severe edge crossings and structural distortions for tree
structures, noticeable grid distortions for grid graphs, and
fails to produce clear clusters for clustered graphs, whereas
AutoFDP accurately characterizes all structures. While the
OOD comparison with DeepGD is asymmetric by design
(training-dependent vs. training-free), it reveals a key strength
of optimization-based approaches: On diverse unseen graphs,
our method achieves robust performance without requiring
training data or fine-tuning. This demonstrates its readiness for
real-world deployment where graph types are unpredictable. In
contrast, data-driven methods like DeepGD face generalization
gaps under distribution shift.

To further compare the layouts generated by AutoFDP and
DeepGD on real-world graphs, we conducted a qualitative
comparison of 15 real graphs. For additional details, please refer
to the supplementary material. As an illustration, we selected
two smaller real-world graphs: dwt419 (a grid graph with 419
nodes and 1,572 edges) and rajat11 (a collaboration network
with 135 nodes and 377 edges). As shown in Figure 10b
and Figure 10c, AutoFDP reveals more structural details than
DeepGD and offers a more accurate representation of the
graph structures. It’s worth noting that we limited the data
size to 500 nodes for this comparison. However, on larger
synthetic and real graphs with more than 1000 nodes, the quality
of DeepGD’s layouts deteriorates further (see supplementary
material). Therefore, we conclude that AutoFDP outperforms
DeepGD on real-world graphs.

Comparing with SmartGD. Figure 11 shows the differences
between AutoFDP and SmartGD. On the Rome dataset
(Figure 11a), the average difference for the optimized SE
approximates 0, while the average difference for the optimized
CL is approximately 0.02, showing a negligible distinction.
The example layouts further showcase that both methods
perform similarly on the Rome dataset. In contrast, on the
synthetic dataset (Figure 11b), both the Optimize SE and
CL exhibit an average difference of approximately -0.15,
indicating that AutoFDP significantly outperforms SmartGD.
After comparison, we discovered that the results produced
by SmartGD are considerably distorted on grid data, and
the graph structures are inaccurately represented on tree and
clustered graphs (see supplementary material). We speculate
that SmartGD also heavily relies on training data and lacks
the extensibility of AutoFDP.

Similarly, we compared the differences between AutoFDP
and SmartGD on real graphs. Figure 12a and Figure 12b
depict the results of AutoFDP and SmartGD, respectively,
when optimizing SE and CL on graph ca-GrQc and bfwa782.
Both for optimizing SE and CL, AutoFDP better preserves data
structure and evenly distributes nodes. Therefore, AutoFDP
also outperforms SmartGD, especially on large graphs (see
supplementary material for details).

In addition, SmartGD tested a shape-based metric [29],
and we similarly conducted tests using the same metric. The
shape-based metrics measure the similarity between the shape
graph generated from the layout results and the original graph.
Consistent with SmartGD, we used the relative neighborhood
graph (RNG) to generate the shape graph. Since SmartGD
does not provide the corresponding code, we only show the
result of AutoFDP and the result of RNG on graph plskz362
in Figure 10c. As illustrated, the majority of edges in the
RNG layout align with those in our layout, with only a small
fraction differing. Hence, our method also exhibits strong
performance in optimizing shape-faithfulness. Please refer to
the supplementary material for more results.
Runtime. Since AutoFDP involves solving an optimization
problem, it is slower than applying a pre-trained DeepGD or
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SmartGD model, particularly on large graphs. However, while
DeepGD and SmartGD requires hours to days of training time,
our method does not have a training phase, offering a potential
advantage in terms of overall time efficiency.

In summary, AutoFDP performs similarly to DeepGD and
SmartGD on datasets with graph structures akin to their training
data but outperforms both DeepGD and SmartGD on other
datasets, indicating superior generalizability of AutoFDP. In
terms of runtime, our method is slower than both DeepGD and
SmartGD, but it does not necessitate the substantial training
time that DeepGD requires.

C. Case Study

Here, we demonstrate the effectiveness of our reuse-and-
optimization scheme using real data. Given the social network
ca-CSphd describing a faculty-student relationship, we first
find the most similar graph from a set of graphs with pre-
computed force-based models. The retrieved graph is VisBrazil,
which is a collaboration network with tree-like structures. As
shown in Figure 13a, our method pre-computes four models
by separately optimizing GP, SE, IL, and NR, resulting in four
layouts, where details are gradually added from Figure 13a(1)
to Figure 13a(4) and only takes only 0.227s for average.

These results indicate that our method can find multiple
meaningful layouts that show different aspects of a given graph,
providing the user with a suitable reference.

Since the layout in Figure 13a(1) conveys the overall
hierarchical structure, the user reuses its force-based model
to the graph ca-CSphd for rapidly getting an overview, which
takes 2.25 s. In contrast, direct use of AutoFDP[GP] on ca-
CSphd takes 4.54 s and gets a very similar layout with GP value
of 0.98, wheras 0.99 for Figure 13b. As shown in Figure 13b, a
radial layout reveals the hierarchy, where the influential nodes
are placed in the center and the leaf nodes are arranged on the
outside. Yet, the hierarchical structure of the subgraphs around
the central nodes in Figure 13b is obscured. For example, the
user gets the orange subgraph by clicking on the center node
and selecting its neighbors within a 3-ring neighborhood. A
few adjacent edges in the selected orange subgraph are bundled
together (see the zoomed inset in the top right). Some tree
branches exhibit heavy visual clutter, such as the red subgraph
selected by the user with the lasso tool in Figure 13b. Such
behaviors prevent us from exploring the structures in detail.

To show the inner hierarchy within the orange subgraph, the
user runs the local optimization with the criterion of SE and
obtains a new result shown in Figure 13c. The inset shows the
three-level hierarchy that is consistently connected to the other
part. Meanwhile, the user applies the local optimization using
the MA criterion to the red subgraph, a local tree structure is
obtained. As shown in Figure 13c, all adjacent edges of the
red subgraph are nearly uniformly spread around the parent
nodes.

VI. CONCLUSION AND FUTURE WORK

We propose a general graph layout framework AutoFDP
that automatically selects a force model that generates a
graph layout to meet a given sum of weighted criteria. Built

on the virtual physics-based force representation, AutoFDP
automatically selects a proper graph layout model that not only
adapts to the structures of different types of graphs but can
also be reused for other graphs. Our evaluation demonstrates
that AutoFDP produces layouts that are comparable or even
superior to SGD2 and deep learning-based methods for most
graphs and can handle large graphs as well.

However, our framework has a few limitations that may
be addressed in future research. One is that it assumes that
forces are exerted on all node pairs, requiring the computation
of pairwise shortest path distances between all nodes, which
is costly for large graphs. We plan to explore combining
the optimization of force ranges with dynamically computing
shortest path distances [38] or other physics-inspired force
representations [13], [39]. Second, reusing a pre-computed
force model of a similar graph might not yield a better layout
than directly optimizing the input graph with the same criteria.
Therefore, it is crucial to offer guidance on choosing suitable
criteria for different graph analysis tasks. Last, current deep
learning-based methods directly solve for node positions that
often yield poor layouts for large graphs, we will therefore
investigate the possibility of integrating virtual physics-based
force representations into neural networks [10], [11].
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