
AutoFDP: A Criteria-driven Force-based Framework for
Graph Layouts

Mingliang Xue, Yifan Wang, Zhi Wang, Lifeng Zhu, Lizhen Cui,
Yueguo Chen, Zhiyu Ding, Oliver Deussen, Yunhai Wang

Abstract—We provide more details of our evaluation results in this supplemental material. Section 1 reports the statistics of the
datasets we used and the common criteria that we use to drive the automated selection of layouts and measure the layout quality.
Section 2 shows the runtime and visual results of our experiments that optimize every single criterion of the nine criteria described
in the SGD2 paper and six sums of weighted criteria by our method and SGD2 obtained from the experiments in Section V-A of the
main paper. Section 3 shows the visual results obtained by optimizing four criteria using our method in comparison to the layouts
generated by four classic methods, which also corresponds to the experiments in Section V-A of the main paper. Lastly, Section 4
shows the comparison between our method and deep learning-based methods in optimizing six different criteria, which corresponds to
the experiments in Section V-B of the main paper.

Index Terms—Graph Layout, Readability Criteria, Optimization

1 DATASETS AND GRAPH READABILITY CRITERIA

1.1 Datasets
First, we provide details of all experimental datasets. For the comparison to SGD2 [1] and classic methods, we utilized 45 synthetic graphs,
including 15 grid graphs, 15 binary trees, and 15 clustered graphs, along with 30 real graphs. For the comparison to DeepGD [2] and SmartGD [3],
we employed 150 small synthetic graphs, comprising 50 grid graphs, 50 binary trees, and 50 clustered graphs, as well as 1000 graph datasets
selected from the Rome dataset.

Scatter plots in Figure 1 showcase the distribution of the number of nodes and edges for the synthetic graphs. Figure 1a shows the distribution
of the number of nodes and edges for 45 synthetic graphs and Figure 1b for 150 small synthetic graphs used in Sections 5.1 and 5.2 of the main
paper, respectively. Figure 2 illustrates the distribution of the number of nodes and edges for the 1000 small graphs selected from the Rome
dataset. Additionally, Table 1 provides a detailed description of the 30 real graphs.

Fig. 1: Scatter plots showing the distribution of the number of nodes and edges for (a) 45 synthetic graphs and (b) 150 small synthetic graphs used in
Sections 5.1 and 5.2 of the main paper, respectively.

1.2 Graph Readability Criteria
Next, we provide a brief overview of the aesthetic criteria used to drive the automated selection of layouts and assess the layout quality in the
experiments. We use the same quality measures for all the methods in our experiments while different methods employ different loss functions.
The loss functions employed by SGD2 and DeepGD were described in their papers [1, 2]. For AutoFDP, the same formulas used to measure
layout quality were also utilized as loss functions to optimize most of the aesthetic objectives. However, to enhance optimization efficiency for
NR, AR, and GP objectives, we incorporated the loss function employed by SGD2.

Normalized Stress Error (SE) [11]. To assess the distance-preservation of a layout, the normalized stress error measures the squared difference
for the shortest path distance di j between nodes i and j and their Euclidean distance:

QSE = LSE =
2

|V |(|V |−1) ∑
i< j

(s̄∥xi −x j∥−di j)
2

di j
2 . (1)

Fig. 2: Scatter plot showing the distribution of the number of nodes and edges for 1000 graphs selected from the Rome dataset.

Table 1: The statistics of 30 real graphs.

Nodes Edges Description and References

lesmis 77 254 co-appearances of characters in Les Miserables [4, 5]
rajat11 135 377 Circuit simulation problem [6]

jazz 198 2742 Jazz muscicians network [6]
visbrazil 222 336 collaboration [4, 5]
mesh3e1 289 800 structural problem [4, 5]

netscience 379 914 co-author network [4, 5]
dwt_419 419 1572 Structural problem [6]
congress 475 10222 Twitter interaction network for the 117th United States Congress [6]
bfwa782 782 3394 structural [7]
qh882 882 1533 Power network problem [6]

soc-wiki-Vote 889 2914 Wikipedia who-votes-on-whom network [6]
cage8 1015 4994 DNA electrophoresis result [4, 5]

circuit204 1020 3973 Circuit simulation problem [6]
ca-CSphd 1025 1043 PhD’s in computer science [6]
bcsstk09 1083 8677 mesh-like, structural [4, 5]
bus1138 1138 1458 power network problem [8]

fpga_dcop1220 1220 2810 circuit simulation matrix [8]
qh1484 1470 2475 power network problem [9]

bcspwr07 1612 2106 power network problem [8, 9]
utm1700b 1700 14626 Electromagnetics problem [6]
bio-CE-HT 2194 2688 Biological Network [6]

data 2851 15093 Miscellaneous Network [6]
ca-GrQc 4158 13422 Collaboration network of Arxiv General Relativity [6]

EVA 4475 4652 Pajek network [6]
3elt 4720 13722 2D/3D Problem [4, 5, 10]

USpowerGrid 4941 6594 power network problem [4, 5, 10, 11]
add32 4960 9462 electronic circuit matrix [10, 12, 13]

p2p-Gnutella08 6299 20776 Gnutella peer to peer network from August 2002 [6]
lastfm_asia 7624 27806 Social network of LastFM users from Asian countries [6]
CA-HepTh 8638 24806 Collaboration network of Arxiv High Energy Physics Theory [6]

where s̄ is a weight factor to scale the layout [14, 15]. When the nodes i and j are in different components (a graph has multiple components), we
only compute stress errors for node pairs with finite distances.

Ideal Edge Length (IL). Assuming the ideal edge length for all edges would be ℓ, IL computes the variance from this ideal length:

QIL = LIL =
1
|E| ∑

(i, j)∈E

(||xi −x j||− ℓ)2

ℓ2 , (2)

where ℓ is 1 by default.

Neighborhood Preservation (NP). The neighborhood preservation measures the alignment between the input graph and the k-nearest neighbor-
hood graph defined in the layout with the Jaccard index. For each node i, we define

ki = |NG(i,r)|, QNPi
= LNPi = 1− NG(i,r)∩NL(xi,ki)

NG(i,r)∪NL(xi,ki)
, (3)

where NG(i,r) is the set of r-ring neighboring nodes in data space, and and NL(xi,ki) are the ki-nearest-neighbors of xi in layout space. Here, we
use r = 2 and normalize the sum of all NPi to [0,1].

Crosslessness (CL). We use the crosslessness metric [16] to quantify the amount of edge crossings:
QCL = LCL = c/cmax,

where c is the number of edge crossings, and cmax is the maximal number in each graph. A smaller value indicates fewer edge crossings.

Crossing Angle (CA). Since the maximum edge crossing angle is π

2 , CA measures the absolute discrepancy between each crossing angle and the
target crossing angle of π

2 :

QCA = LCA =
1

|CE| ∑
i, j∈CE

∣∣∣θi, j −
π

2

∣∣∣/π

2
, (4)

where CE is the set of crossing edges, θi, j is the crossing angle of edges i and j. A small CA indicates large crossing angles between edges,
resulting in better readability of the graph layout.

Minimum Angle (MA). For the node i, MA is defined as the deviation between the minimum angle between incident edges θmin(i) and the ideal
minimum angle θ(i):

θ(i) =
2π

degree(i)
, QMA = LMA =

1
|V |

|V |

∑
i

|θ(i)−θmin(i)|
θ(i)

, (5)

where MA is in the range [0,1].

Node Resolution (NR). To assess the amount of node overlap, NR is usually defined as the minimum distance between two nodes in a layout [17].

dmax = max
i, j∈V

||xi −x j||,QNR = 1−min(1,
mini, j∈V ||xi −x j||√

|V |dmax
), (6)

where dmax represents the distance between the two nodes with the farthest Euclidean distance in the layout. The loss function is defined as the
sum of the differences between the distances of each node pair and dmax:

LNR = ∑
i, j∈V,i̸= j

max(0,(1−
||xi −x j||√
|V |dmax

)2). (7)

Aspect Ratio (AR). To indicate to what extent the bounding box of a layout approaches a square, we define it as:

QAR = 1− min
θ∈ 2πk

N ,k∈[0,...,(N−1)]

min(wθ ,hθ)

max(wθ ,hθ)
, (8)

where w and h are the width and height of the bounding box. The quality measure for AR involves rotating the layout N times and measuring the
minimum ratio between the width wθ and height hθ of the bounding box obtained in each rotation, we take N = 7 in our experiments. The loss
function is defined as the cross-entropy of the ratio between the width w and height h of the bounding box:

LAR =−rlog(
w
h
)− (1− r)log(1− w

h
). (9)

Gabriel Graph Property (GP). For any edge l from the layout, we can draw a circle with the edge as its diameter. If all these circles contain no
other nodes of the layout, then the graph is a Gabriel graph [18]. GP we call the proportion of edges without nodes in their circles [1].

QGP = 1−min(1, min
(i, j)∈E,k∈V

||xk − ci j||
ri j

), (10)

where ri, j and ci, j are the radius and the midpoint of edge (i, j). The loss function is defined as the sum of the exceeding distances beyond ri, j for
each edge to all other nodes.

LGP = ∑
(i, j)∈E,k∈V,k ̸=i, j

max(0,ri, j −||xk − ci, j||)2. (11)

T-distributed Stochastic Neighbor Embedding (TSNE). The criterion TSNE aims at minimizing the divergence between the graph space

similarity pi j and the graph space similarity pi j:

QT SNE = LT SNE = ∑
i ̸= j

pi jlog
pi j

qi j
, (12)

The formulas of graph space similarity pi j and the graph space similarity qi j of node i and j are as follows:

pi j = p ji =
pi| j + p j|i

2N
, p j|i =

exp(− d2
i j

2σ 2
i
)

∑k ̸=i exp(d2
ik

2σ 2
i
)
, (13)

qi j = q ji =
(1+ ||xi −x j||2)−1

∑k ̸=l(1+ ||xk −xl ||2)−1
, (14)

where di j indicates the graph distance between node i and j, and σi is a hyper parameter representing the Gaussian standard deviation for node i.

2 COMPARISON TO SGD2

Then we compare our method with SGD2 by optimizing every single criterion of the nine criteria and six sums of weighted criteria provided by
SGD2 paper. The optimized single criterion including Stress Error (SE), Ideal Edge Length (IL), Neighborhood Preservation (NP), Crosslessness
(CL), Minimum Angle (MA), Crossing Angle (CA), Node Resolution (NR), Aspect Ratio (AR) and Gabriel Graph Property (GP). The optimized
sums of weighted criteria include SE+IL, SE+NP, SE+CL, SE+CA, SE+GP, and NP+CL.

We show the runtime comparison between our method and SGD2 of optimizing nine single criteria and six multiple criteria in Figure 3.
Also, we show the visual results of our experiments, where Figure 4 shows the visual results of optimizing each single criterion, and Figure 5
shows the visual results of optimizing multiple criteria on synthetic graphs. Due to their overwhelming number of visual results, we only selected

9 data with different structures for presentation. Among them are two clustered graphs, three binary tree graphs, and four grid graphs. In Figure 6
and Figure 7, we show the visual results of optimizing each single criterion and multiple criteria on 30 real graphs, respectively.

Fig. 3: Runtime comparison between our method and SGD2: optimizing nine single criteria (a) and six multiple criteria (b).

Fig. 4: Visual results generated by optimizing every single criterion on synthetic graphs.

Fig. 5: Visual results generated by optimizing multiple criteria on synthetic graphs.

Fig. 6: Visual results generated by optimizing every single criterion on the first 15 real graphs.

Fig. 7: Visual results generated by optimizing multiple criteria on the last 15 real graphs.

Fig. 8: Visual results generated by optimizing every single criterion on the first 15 real graphs.

Fig. 9: Visual results generated by optimizing multiple criteria on the last 15 real graphs.

3 COMPARISON TO CLASSIC METHODS

We further compared five kinds of classic methods (stress model [19], SFDP [12], Maxent [11], tsNET [5] and DRGraph [4]) with our method.
We focus on the layout results obtained by optimizing a select set of criteria including Stress Error (SE), Neighborhood Preservation (NP),
Crosslessness (CL), and their combinations by our method in this comparison. Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 show
the visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL],
and five classic methods on grids, binary trees, clustered graphs, and real graphs.

Fig. 10: Visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL] (top),
and five classic methods (bottom) on grids.

Fig. 11: Visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL] (top),
and five classic methods (bottom) on binary trees.

Fig. 12: Visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL] (top),
and five classic methods (bottom) on clustered graphs.

Fig. 13: Visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL] (top),
and five classic methods (bottom) on the first 15 real graphs.

Fig. 14: Visual results obtained by using AutoFDP[SE], AutoFDP[NP], AutoFDP[CL], AutoFDP[SE+NP], AutoFDP[SE+CL], AutoFDP[NP+CL] (top),
and five classic methods (bottom) on the last 15 real graphs.

4 COMPARISON TO DEEP LEARNING-BASED METHODS

Last, we compared our method with the deep learning-based methods, DeepGD and SmartGD. Figure 15 and Figure 16 show the visualization
results obtained by AutoFDP and DeepGD on 1000 graph data and 150 synthetic graphs selected from the Rome dataset, respectively. Similarly,
Figure 19 and Figure 20 illustrate the results obtained by AutoFDP and SmartGD on the same subsets of the Rome dataset and the synthetic
graphs, respectively. Due to the large number of visualizations, we show only 10 examples with different structures in the Rome dataset. For the
synthetic graphs, we chose 12 different sizes of graphs to show. These include 4 clustered graphs, 4 binary tree graphs and 4 grid graphs. In
Figure 17, Figure 18, Figure 21, and Figure 22 we show the visual results obtained by SmartGD and DeepGD on 27 real graphs, along with
comparisons with the AutoFDP layout results. The 3 largest graphs p2p-Gnutella08, lastfm_asia and CA-HepThy were not included in the
comparison because they consumed too much memory to run the results in DeepGD and SmartGD, but the corresponding results for AutoFDP
can be found in section 3. In addition, Figure 23 shows the visual results of AutoFDP on optimizing shape-based metric on real graphs and the
corresponding shape graphs, which are generated using the Relative Neighborhood Graph (RNG) method consistent with SmartGD.

Fig. 15: Visual results generated by AutoFDP and DeepGD on Rome Dataset.

Fig. 16: Visual results generated by AutoFDP and DeepGD on synthetic graphs.

Fig. 17: Visual results generated by AutoFDP and DeepGD on the first 15 real graphs.

Fig. 18: Visual results generated by AutoFDP and DeepGD on the last 12 real graphs.

Fig. 19: Visual results generated by AutoFDP and SmartGD on Rome Dataset.

Fig. 20: Visual results generated by AutoFDP and SmartGD on synthetic graphs.

Fig. 21: Visual results generated by AutoFDP and SmartGD on the first 15 real graphs.

Fig. 22: Visual results generated by AutoFDP and SmartGD on the last 12 real graphs.

Fig. 23: Visual results obtained by AutoPDF optimizing shape-based criterion with corresponding RNG graphs.

REFERENCES

[1] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li, “Multicriteria scalable graph drawing via stochastic gradient descent, (SGD)2,” IEEE Transactions
on Visualization and Computer Graphics, vol. 28, no. 6, pp. 2388–2399, 2022. 1, 3

[2] X. Wang, K. Yen, Y. Hu, and H.-W. Shen, “DeepGD: A deep learning framework for graph drawing using GNN,” IEEE Computer Graphics and Applications,
vol. 41, no. 5, pp. 32–44, 2021. 1

[3] X. Wang, K. Yen, Y. Hu, and H. Shen, “SmartGD: A GAN-based graph drawing framework for diverse aesthetic goals,” IEEE Transactions on Visualization
and Computer Graphics, vol. 30, no. 8, pp. 5666–5678, 2024. 1

[4] M. Zhu, W. Chen, Y. Hu, Y. Hou, L. Liu, and K. Zhang, “DRGraph: An efficient graph layout algorithm for large-scale graphs by dimensionality reduction,”
IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1666–1676, 2020. 2, 11

[5] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov, and A. C. Telea, “Graph layouts by t-SNE,” Computer Graphics Forum, vol. 36, no. 3, pp.
283–294, 2017. 2, 11

[6] S. Di Bartolomeo, E. Puerta, C. Wilson, T. Crnovrsanin, and C. Dunne, “A collection of benchmark datasets for evaluating graph layout algorithms,” Under
submission to Graph Drawing Posters, 2023. [Online]. Available: https://visdunneright.github.io/gd_benchmark_sets/ 2

[7] A. Schulz, “Drawing 3-polytopes with good vertex resolution.” Journal of Graph Algorithms and Applications, vol. 15, no. 1, pp. 33–52, 2011. 2
[8] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and visualization,” Twenty-Ninth AAAI Conference on Artificial

Intelligence, vol. 29, no. 1, pp. 4292–4293, 2015. [Online]. Available: https://networkrepository.com 2
[9] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress majorization,” in International Symposium on Graph Drawing, 2004, pp. 239–250. 2

[10] U. Brandes and C. Pich, “Eigensolver methods for progressive multidimensional scaling of large data,” in Graph Drawing, M. Kaufmann and D. Wagner, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 42–53. 2

[11] E. R. Gansner, Y. Hu, and S. North, “A maxent-stress model for graph layout,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp.
927–940, 2012. 1, 2, 11

[12] Y. Hu, “Efficient high-quality force-directed graph drawing,” Mathematica Journal, vol. 10, no. 1, pp. 37–71, 2005. 2, 11
[13] C. Walshaw, “A multilevel algorithm for force-directed graph drawing,” in Graph Drawing: 8th International Symposium, GD 2000 Colonial Williamsburg,

VA, USA, September 20–23, 2000 Proceedings 8. Springer, 2001, pp. 171–182. 2
[14] F. Grötschla, J. Mathys, R. Veres, and R. Wattenhofer, “CoRe-GD: A hierarchical framework for scalable graph visualization with GNNs,” in The Twelfth

International Conference on Learning Representations (ICLR 2024). OpenReview, 2024. 2
[15] F. Zhong, M. Xue, J. Zhang, F. Zhang, R. Ban, O. Deussen, and Y. Wang, “Force-directed graph layouts revisited: a new force based on the t-distribution,”

IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 7, pp. 3650–3663, 2024. 2
[16] H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal of Visual Languages and Computing, vol. 13, no. 5, pp. 501–516, 2002. 3
[17] M. Chrobak, M. T. Goodrich, and R. Tamassia, “Convex drawings of graphs in two and three dimensions (preliminary version),” in Proceedings of the Twelfth

Annual Symposium on Computational Geometry, 1996, pp. 319–328. 3
[18] P. Eades, S.-H. Hong, K. Klein, and A. Nguyen, “Shape-based quality metrics for large graph visualization,” in Graph Drawing and Network Visualization.

Springer International Publishing, 2015, pp. 502–514. 3
[19] J. X. Zheng, S. Pawar, and D. F. Goodman, “Graph drawing by stochastic gradient descent,” IEEE Transactions on Visualization and Computer Graphics,

vol. 25, no. 9, pp. 2738–2748, 2018. 11

https://visdunneright.github.io/gd_benchmark_sets/
https://networkrepository.com

	Datasets and Graph Readability Criteria
	Datasets
	Graph Readability Criteria

	Comparison to SGD2
	Comparison to Classic Methods
	Comparison to Deep Learning-based Methods

