
Decentralized Actor Scheduling and Reference-based Storage in
Xorbits: a Native Scalable Data Science Engine

Weizheng Lu

Renmin University of China

luweizheng@ruc.edu.cn

Chao Hui

Shandong University

chaohui@mail.sdu.edu.cn

Yunhai Wang

Renmin University of China

wang.yh@ruc.edu.cn

Feng Zhang

Renmin University of China

fengzhang@ruc.edu.cn

Yueguo Chen

Renmin University of China

chenyueguo@ruc.edu.cn

Bao Liu

Xorbits Inc.

liubao@xprobe.io

Chengjie Li

Xorbits Inc.

lichengjie@xprobe.io

Zhaoxin Wu

Xorbits Inc.

wuzhaoxin@xprobe.io

Xuye Qin

Xorbits Inc.

qinxuye@xprobe.io

ABSTRACT
Data science pipelines consist of data preprocessing and trans-

formation, and a typical pipeline comprises a series of operators,

such as DataFrame filtering and groupby. As practitioners seek
tools to handle larger-scale data while maintaining APIs compat-

ible with popular single-machine libraries (e.g., pandas), scaling

such a pipeline requires efficient distribution of decomposed tasks

across the cluster and fine-grained, key-level intermediate storage

management, two challenges that existing systems have not effec-

tively addressed. Motivated by the requirements of scaling diverse

data science applications, we present the design and implemen-

tation of Xorbits, a native scalable data science engine built on

our decentralized actor model, Xoscar. Our actor model can elimi-

nate dependency on a global scheduler and enable fast actor task

scheduling. We also provide reference-based distributed storage

with unified access across heterogeneous memory resources. Our

evaluation demonstrates that Xorbits achieves up to 3.22× speedup

on 3 machine learning pipelines and 22 data analysis workloads

compared to state-of-the-art solutions. Xorbits is available on PyPI

with nearly 1k daily downloads and has been successfully deployed

in production environments.

PVLDB Reference Format:
Weizheng Lu, Chao Hui, Yunhai Wang, Feng Zhang, Yueguo Chen, Bao Liu,

Chengjie Li, Zhaoxin Wu, and Xuye Qin. Decentralized Actor Scheduling

and Reference-based Storage in Xorbits: a Native Scalable Data Science

Engine. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/xorbitsai/xorbits, https://github.com/xorbitsai/xoscar.

Yunhai Wang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

1 INTRODUCTION
Data science pipelines typically involve data loading, preprocessing,

transformations, and analysis [36, 47]. When scaling these work-

loads, practitioners prefer toolkits with APIs similar to single-node

pandas [25, 30] while handling larger datasets [37, 41]. One common

implementation approach to scalable data science (SDS) is partition-

ing large datasets into chunks and building a computational task

graph, where each graph node executes using single-node libraries

like pandas [37, 39]. Although this paradigm sounds straightfor-

ward, scaling diverse data science operations while maintaining

compatible APIs presents significant challenges. Consider a data

science pipeline that reads a CSV file and performs groupby and
merge operations. In a distributed environment, data of different

keys is distributed across multiple workers. Suppose the key1 data

should flow from worker 1 to worker 2, then to worker 3 for other

merge operations. Worker 1 should deallocate the original key1
memory space when key1 data is no longer needed. This pipeline

highlights two critical requirements: 1) efficient scheduling tasks

from the computational graph across workers and 2) fine-grained,

key-level data management within the distributed environment.

SDS requires addressing two critical challenges: efficiently dis-

tributing task graphs across workers for concurrent execution and

enabling fast key-level data access to both local and remote data for

operations like groupby. Existing SDS systems fall short in address-

ing these challenges. 1) Centralized Scheduling: Systems such as

Dask [39] and Modin [37] on Ray [33] rely on a centralized sched-

uler to coordinate all task executions. This scheduler processes task

submissions and data movement requests sequentially, which can

easily become a system bottleneck [3, 34]. 2) Coarse-grained Data
Management: Ray, originally designed for reinforcement learn-

ing [28], offer users the object-level data API rather than key-level.

This design is misaligned with data science operations like groupby
that require shuffling specific keys between workers. Consequently,

Modin on Ray demonstrates poor efficiency in large datasets [7, 11].

Rather than building upon existing distributed execution engines

like Ray or Dask, we design Xorbits from the ground up as an SDS-

native engine driven by data science workload requirements. Xor-

bits leverages dynamic tiling [29] to build balanced computational

https://doi.org/XX.XX/XXX.XX
https://github.com/xorbitsai/xorbits
https://github.com/xorbitsai/xoscar
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


task graphs, efficiently schedules partitioned tasks to appropriate

computing nodes, and then executes using single-machine tools.

This ground-up design allows Xorbits to directly address the

fundamental limitations of existing systems through two key inno-

vations. First, we build Xorbits SDS engine with the actor model [23]

that we call Xoscar. Xoscar uses IP addresses to create or reference

actors. This eliminates the need for a centralized global sched-

uler, enabling efficient actor creation and execution through direct

addressing. For task scheduling, Xorbits employs a nearest com-

mon successor enhanced breadth-first search (BFS) algorithm to

assign tasks from the computational graph to appropriate workers,

aiming to preserve data locality. Second, we implement a reference-

based distributed data management system. We design a unified,

filesystem-like I/O interface, abstracting data management through

file handles instead of direct data objects, providing unified access

across diverse storage backends like main memory, GPUs, and disks.

Xorbits is a production-ready toolkit and can act as a distributed

and drop-in replacement for widely used libraries such as pandas,

NumPy, and cuDF [4], among others.

We evaluate the performance of Xorbits and Xoscar with vari-

ous types of workloads, including machine learning preprocessing

pipelines [1, 5, 18], DataFrame data analysis [17], and actor task

scheduling. Compared to other fastest solutions, Xorbits achieves a

substantial 3.22× average speedup on 3 machine learning pipelines

and 22 data analysis workloads. In task scheduling tests, Xoscar

achieves a 8× speedup over Ray.

To summarize, this paper makes the following contributions:

• We design our Xorbits SDS-native engine to meet the require-

ments of data science workloads. It is built upon the decentral-

ized Xoscar actor model.

• We present the design of efficient task scheduling with reference-

based distributed storage, enabling data locality and fine-grained

data management across heterogeneous memory resources.

• We evaluate Xorbits and Xoscar against existing systems like

PySpark, Dask, Ray, and Modin on various benchmarks with dif-

ferent hardware platforms. We demonstrate significant speedups

over these systems in machine learning pipelines, data analysis,

and actor concurrent execution.

2 BACKGROUND AND MOTIVATION
2.1 Background & Related Works
Scalable Data Science. One common approach for scalable data

science that maintains API compatibility is the divide-and-conquer

strategy, which partitions large datasets into smaller chunks, builds

computational task graphs, and processes each chunk indepen-

dently using single-machine tools. Popular libraries such as Dask [39]

and Modin [37] utilize this method. While this approach sounds

straightforward, developing a production-ready SDS system should

address two fundamental challenges: 1) Computational Graph:
building load-balanced computational task graphs to prevent data

skewing and 2) Distributed Execution Engine: scheduling and
executing tasks while efficiently managing intermediate data of

computational graphs and preserving data locality. To address the

first challenge, state-of-the-art solutions collect accurate runtime

statistics to dynamically partition and re-optimize the computa-

tional graph, resulting in more balanced chunks [29, 45, 46]. This

paper focuses on the latter challenge, where implementation com-

plexity stems from the diverse range of data science operations,

from embarrassingly parallel operators (like filtering DataFrame

columns) to shuffle-intensive operations (like groupby).
Distributed Programming Model. In distributed computing,

three main programming models exist: bulk synchronous parallel

(BSP) [42], asynchronous many-task (AMT) [15, 22, 26, 38], and ac-

tor [12, 23]. MPI [43], widely used in high-performance computing,

implements the BSP model but suffers from inefficiencies due to

synchronization barriers, especially with imbalanced workloads

and heterogeneous computing environments [13, 16, 49]. The AMT

model eliminates strict synchronization barriers, but requires effi-

cient task scheduling and data management to prevent performance

degradation from load imbalance [32, 35, 44]. In contrast, the actor

model provides a distinct approach where each actor maintains

internal state and communicates exclusively through asynchronous

messages, differing from both BSP’s explicit barriers and AMT’s

limited state management during execution. Task scheduling can

be categorized into two types: centralized and decentralized. In

centralized approaches, all decision-making is handled by a single

scheduler, and task assignments are made sequentially. This serial

nature becomes a bottleneck as task complexity increases [19, 44].

In contrast, decentralized approaches offer better scalability by

allowing parallel decision-making based on partial information,

thereby eliminating single points of failure [31].

Existing Systems. Table 1 compares existing systems along

with their underlying distributed runtimes and programming mod-

els. Dask’s dask.distributed module employs a centralized scheduler

that coordinates workers and making all decisions, including task

states management and task graph updates. The scheduler can

easily become the bottleneck [3, 34]. Modin on Ray uses Ray as

its distributed runtime, which supports both tasks and actors but

faces centralized scheduling challenges. Ray maintains a global

control service for metadata and resource allocation, requiring fre-

quent metadata synchronization and creating overhead in large

clusters [9, 14]. While Ray’s distributed object store offers simple

APIs (ray.put and ray.get) that abstract data management, it

lacks fine-grained interfaces for users. Spark has developed its own

execution engine. PySpark connects Python processes to the JVM-

based runtime through language bindings, introducing serialization

overhead with Python user-defined functions (UDFs) [2, 27], limit-

ing its integration with the broader Python data science ecosystem.

Speed and scalability are discussed in detail in Section 6. In terms

of API compatibility, Modin offers the best coverage. Other systems

may fail in less common long-tail scenarios. Dask and PySpark do

not support certain column-wise data decomposition operators [37],

whereas Xorbits does. Regarding fault tolerance, Spark is the most

mature. Dask, Modin, and Xorbits employ simpler mechanisms:

Dask supports basic recomputation, Modin relies on Ray’s fault

tolerance, and Xorbits leverages orchestration platforms such as

Kubernetes.

2.2 Empirical Study & Observation
To validate the limitations of existing systems in scheduling and

data management, we conduct an empirical study. We use four

computing workers, each with 64GB of memory, to perform the

2



Table 1: Comparison of SDS Engines. H: High, M: Medium, L:
Low.

Dask

Modin

Ray

PySpark Xorbits

Speed M M H H

Scalability M L H H

Python Native ✓ ✓ ✓
API Compatibility L H L M

Fault Tolerance M M H M

GPU ✓ plugin ✓
Distributed

Engine

dask

distributed

Ray

Spark

Runtime

Xoscar

Programming

Model

AMT

AMT

Actor

AMT Actor

df = pd.read_csv(path) df.groupby('col1')['col2'].sum()

col1 col2 col3
key1
key2
key3

Worker 1

Worker 2

Worker 1

Worker 2

Worker 1

col1 col2 col3
key1
key2
...

col1 col2 col3
key1
key1
key3

col1 col2 col3
key2
key2
...

col1 col2-sum
key1
key3

Worker 2

sum()

col1 col2-sum
key2
...

sum()

Local Transfer

Figure 1: A simple data science pipeline in a distributed envi-
ronment: loading data followed by a column-wise groupby.
Note that this diagram provides a simplified illustration and
does not show the complete MapReduce workflow.

groupby.agg operation on a 22GB Parquet dataset. The detailed

experimental setup, including hardware specifications and exist-

ing system baselines, is detailed in Section 6.1. Figure 1 illustrates

this shuffle-intensive DataFrame operation, where part of the data

should be transferred while others remain local. In real-world sce-

narios, workloads exhibit much more complex data placement pat-

terns and larger computational graphs than depicted in this figure.

We monitor memory utilization, which is displayed in Figure 2,

where each line represents the memory utilization of one worker.

We plot memory instead of CPU usage, as memory is often the

primary bottleneck, and memory patterns offer valuable insights

into scheduling efficiency and data distribution.

Xorbits is slightly slower than PySpark but 3.65× times faster

than Dask, while Modin on Ray hangs and cannot complete it

successfully. Through empirical studies and analysis of system

architecture, we reveal the following limitations:

• Inefficient Task Scheduling. Section 2.1 discusses the bottle-

necks of centralized scheduling in Dask and Modin. The results

of the empirical study also confirm this. In Figure 2, the mem-

ory usage of the four workers reveals the scheduling patterns.

The four memory lines of Xorits overlap, indicating parallel

execution. In contrast, Dask exhibits significant idle time be-

tween workers, referred to as bubble overhead [24], indicating

inefficient task scheduling across multiple workers.

• Coarse-grained Storage Management. Ray’s distributed ob-

ject store is well-suited for learning tasks; however, it is not

optimal for DataFrame scenarios. Take the groupby in Figure 1

as an example. A Ray worker will first put data locally. If the data

needs to be transferred to other workers, Ray creates redundant

copies of the data object on multiple workers because it does

not give users fine-grained control over data transfer or garbage

collection of unused data.

This limitation is evident in our empirical results in Figure 2,

where Modin on Ray exhibits severe memory imbalance: one

worker consumes nearly 100% memory while others remain

underutilized, data skew towards a single worker, and the work-

load cannot execute successfully. This issue has been repeatedly

raised in the Modin community due to poor memory spill man-

agement [7, 11].

0 200 400 600 800 1000
Time (s)

0

20

40

60

80

100

M
em

or
y U

sa
ge

(%
)

Xorbits
Dask
Modin
PySpark

Figure 2: Memory usage during distributed DataFrame
groupby on four workers using Xorbits, Dask, PySpark, and
Modin on Ray. Each line represents one worker’s memory
usage over time.

3 SYSTEM OVERVIEW
This section introduces Xorbits’ design principles and presents its

two-tier system architecture.

3.1 Design Principle
Driven by the requirements of SDS, we believe designing and im-

plementing an SDS system design should follow the following

principles.

• Lightweight and Flexible Task Scheduling. To prevent the

global scheduler from becoming a system bottleneck, the sched-

uler and task dispatching mechanism should be lightweight and

flexible.

• Locality-aware and Fine-grained Control of Intermediate
Data. To optimize I/O-intensive operations, intermediate data

management requires locality-aware, fine-grained control over

data placement, movement, reference, and de-reference.

To this end, we develop Xorbits, a toolkit that offers com-
petitive performance while keeping APIs compatible with
original local libraries.

3.2 System Design
Figure 3 illustrates Xorbits’ two-tier architecture. The underlying

Xoscar is a decentralized, lightweight actor model without a global

scheduler, allowing for the concurrent execution of computational

tasks. Built upon Xoscar, we develop Xorbits, an SDS engine that

can efficiently scale data science workloads, including DataFrame

processing, array operations, etc. Since the actor layer handles both

computation and communication, it should not be tightly bound to

3



a global scheduler. While distributed systems often rely on a central

scheduler, it can easily become a bottleneck. To mitigate this, we

embed a lightweight scheduler within the SDS engine, minimizing

centralized control. The engine defines two roles: a supervisor and

multiple workers. The supervisor delegates responsibilities like

memory and task graph management to workers. Workers execute

physical plans and manage local storage, with actors operating

autonomously and without frequent synchronization.

Computation Graph Dynamic Tiling

Decentralized
Lightweight

Actor

Service
Storage Task

xorbits.numpy Operator

Create / Destory
Actor

Stateful
Computation

Reference
 Actor

Send / Recv
 Message

Scalable
Data

Science
Engine

Actor

SchedulingMeta

Stateless
Computation

xorbits.pandas ...

...

...

Figure 3: Xorbits system architecture: divided into the de-
centralized decentralized actor layer and the scalable data
science engine layer.

Novelty and Organization. Our system introduces two key

innovations:

• IP-based Decentralized Actor (Section 4) that alleviates the

bottleneck of centralized scheduling. Xorbits supports direct

task scheduling to specific computing nodes using IP-based ad-

dressing, allowing actors on different nodes to execute asyn-

chronously and concurrently, and operations on worker actors

do not need to inform the central supervisor.

• Reference-based Distributed Storage (Section 5) that enables

fine-grained, key-level data access across both local and remote

workers. When data is not in use, it is managed as a lightweight

reference and only accessed or transferred when needed. First,

this enables full-lifecycle, key-level data management with no

redundant data copies. Second, it supports heterogeneous com-

puting by allowing SDS workloads to scale on various storage

media such as GPUs and disks.

4 LIGHTWEIGHT ACTOR SCHEDULING
In this section, we first introduce Xoscar, our actor model for task

scheduling and execution, including its usage patterns and design

principles. We then describe how physical execution plans are

distributed across workers in the Xorbits SDS engine.

4.1 Xoscar Usage & Implementation
Before delving into the internal design of Xoscar, we will first

explain how to use Xoscar to ensure the reader can grasp our design

philosophy.

Xoscar Usage. Listing 1 showcases the API usage. Before creat-

ing and using actors, users must start an actor pool which binds

to a specific IP address and Xoscar generates a unique address

(external_address) in the format of ip:port. To define an actor,

users can inherit from xoscar.Actor and customizes their own

methods (e.g., estimate). Xoscar supports both stateless and state-

ful computation. When actor users inherit from the xoscar.Actor
class, they can create class instance attributes as needed (such as

NumPy arrays or pandas DataFrames) to enable stateful computa-

tion. When creating and referencing an actor, users locate the actor

by using the external_address.
Decentralized Actor. The example in Listing 1 illustrates that

Xoscar 1) does not emphasize the concept of computing resources

and 2) utilizes addresses for managing actor pools and actors. In a

Xoscar cluster, there is no centralized scheduler. Centralized sched-

ulers can be developed by higher-level applications (e.g., the SDS

engine) tailored to specific workloads (e.g., scalable DataFrame).

This approach eliminates the need for querying a global control

service, as done in Ray. Consequently, Xoscar can rapidly create,

reference, and use actors.

Listing 1: Quickstart example of Xoscar.
import xoscar as xo

pool = await xo.create_actor_pool(
address="192.168.1.1", n_process =4
)

class PiActor(xo.Actor):
def estimate(self , n):

# code to estimate pi
actor_ref = await xo.create_actor(

PiActor , address=pool.external_address , ...
)

actor_ref.estimate (100)

Lightweight Actor. Xoscar implements core functionalities of

actor programming, such as creating, referencing, and message

passing. Xoscar adheres to the principle of “users manage what

they use", delegating fine-grained management tasks, such as re-

source management and task scheduling, to actor users (i.e., the

SDS engine). Figure 4 illustrates the architecture of Xoscar, with

two Xoscar workers on two computing nodes.

Actor Pool. In our implementation, Xoscar initiates a Main-
ActorPool on each Worker node, which subsequently creates Sub-
ActorPools based on the user’s required degree of parallelism. The

MainActorPool is responsible for managing and coordinating all

SubActorPools, while the SubActorPools are where actors are ex-
ecuted. Each actor pool operates as a separate process capable of

hosting multiple actors, meaning multiple actors can exist within

a single process. Applications built on Xoscar are responsible for

managing parallelism. For instance, based on the application re-

quirements, the SDS engine allocates one SubActorPool per CPU

core or GPU device.

Sub
ActorPool

Xoscar Worker
Main

ActorPool

Actor

Actor

Router

ActorUnixSocket
Channel

Sub
ActorPool

Actor

Xoscar Worker
Main

ActorPool

Actor

Actor

Sub
ActorPool

Actor

Sub
ActorPool

Actor

Socket
ChannelActor

Router Router Router Router Router

Dummy
Channel

Dummy
Channel

UCX
Channel

GPUGPUCPUCPUCPUCPU

Figure 4: Xoscar architecture.4



Communication. To facilitate message passing between actors,

we offer various communication channels. These channels establish

connections between two actor pools, and each pool contains a

router that maintains routing paths between source and destination.

• DummyChannel. When two actors reside within the same ac-

tor pool, meaning inside a single process, we define the Dummy-

Channel. Two actors communicate with each other by putting

or getting messages from the asyncio.Queue, in a producer-

consumer manner.

• UnixSocketChannel. When two actors are in different actor

pools of the same worker, i.e., in different processes within the

same worker, we design the UnixSocketChannel. The UnixSock-

etChannel leverages Unix domain sockets, which provide effi-

cient inter-process communication by reading from and writing

to shared files, thus enabling direct data exchange without the

overhead of network protocols.

• SocketChannel. For scenarios where two actors reside on dif-

ferent workers, thus requiring inter-node communication, we

develop the SocketChannel, which uses TCP sockets for com-

munication.

• UCXChannel. UCXChannel facilitates UCX’s [40] Remote Di-

rect Memory Access (RDMA) for GPU-to-GPU communication.

4.2 Data-Intensive I/O
To optimize data-intensive I/O, we implemented two enhancements:

point-to-point transfers and “delay & batch" remote actor calls.

Point-to-point Transfer. Shuffle-intensive I/O (e.g., DataFrame

groupby or merge) mainly involves point-to-point (P2P) data ex-

changes between actors. We implement a buffer-to-buffer copy_to
interface that utilizes the UCXChannel for RDMA data transfer

between actors.

Delay & Batch. In our practice, we observe that, due to the non-

uniform data distribution in SDS workloads, many remote actor

calls contain only small amounts of data. And one I/O operation

per remote actor call is quite costly. Consequently, we develop a

“delay & batch" mechanism that initially delays these I/O-based

actor calls; they are logged by Xoscar and then batch executed after

accumulating several such calls.

4.3 Locality-Aware Task Scheduling
Task scheduling maps tasks of the physical execution plan to avail-

able computing resources. Xorbits builds task scheduling service

through Xoscar’s address-based allocation mechanism. We use

“band" as the basic unit of hardware resource, where a band rep-

resents either a NUMA (Non-Uniform Memory Access) node or a

GPU device. Xorbits’ scheduling service identifies available bands

on each Xorbits worker and assigns unique addresses to each band.

Band address follows the format of "ip:numa-0" or "ip:gpu-0", align-

ing with Xoscar’s address-based design principle.

Locality-Aware Scheduling Algorithm. To ensure upstream

and downstream nodes in the task graph are assigned to the same

or nearby bands, we design a nearest common successor enhanced

breadth-first search (BFS) algorithm, which is outlined in Algo-

rithm 1. This algorithm selects tasks with the nearest common

successors from the task graph and assigns these tasks to the same

or nearby workers. This algorithm leverages data locality between

Algorithm 1 Nearest Common Successor Enhanced Breadth-First

Search for Task Assignment

Require: Graph 𝐺 = (𝑁, 𝐸), 𝑁 : task graph nodes, 𝐸: edges

1: 𝑆𝑄 ← starting nodes without predecessors in 𝐺

2: 𝑓 𝑖𝑟𝑠𝑡 ← 𝑆𝑄 [0], 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← 𝑆𝑄 [1 :]
3: Sort 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ascending based on 𝐻𝐶𝑆_𝐻𝑒𝑖𝑔ℎ𝑡 of 𝑓 𝑖𝑟𝑠𝑡

4: 𝑆𝑄 ← [𝑓 𝑖𝑟𝑠𝑡] + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

5: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑛] ← 𝑓 𝑎𝑙𝑠𝑒 for all 𝑛 ∈ 𝑁 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑆𝑄 [0]] ← 𝑡𝑟𝑢𝑒

6: 𝑄 ← empty queue

7: Enqeue(𝑄 , Deqeue(𝑆𝑄))

8: while 𝑄 is not empty do
9: 𝑢 ← Deqeue(𝑄), output 𝑢
10: for each successor 𝑣 of 𝑢 do
11: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] = 𝑓 𝑎𝑙𝑠𝑒 then
12: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] ← 𝑡𝑟𝑢𝑒 , Enqeue(𝑄 , 𝑣)

13: if 𝑄 is empty & 𝑆𝑄 is not empty then
14: Enqeue(𝑄 , Deqeue(𝑆𝑄))

15:

16: function NCS_Height(𝑛1, 𝑛2)

17: Return the height of the NCS of 𝑛1 and 𝑛2

connected nodes as there are dataflow connections between these

connected nodes.

4.4 Comparison with Actor Systems
Design Philosophy & Application. Xoscar targets Python SDS

workloads with a lightweight design optimized for data science

scenarios requiring rapid iteration. Similarly, Ray [33], also Python-

native, focuses onML applications, particularly reinforcement learn-

ing. In contrast, Orleans [20] operates in the .NET ecosystem for

enterprise applications, introducing "virtual actors" with automated

lifecycle management, while Ambrosia [21] targets enterprise ap-

plications with stricter reliability and availability demands.

Resiliency to Failure. Xoscar adopts a pragmatic approach

to failure handling, leaving user-level failures (i.e., user bugs) to

developers for debugging while leveraging external orchestration

platforms like Kubernetes to handle system-level failures (i.e., hard-

ware and infrastructure). This approach aligns with data science

workflows where rapid development and debugging are prioritized.

In contrast, Orleans provides automatic state consistency and elas-

tic scalability through its virtual actor model, while Ambrosia im-

plements automatic recovery via its virtual resiliency mechanism,

both designed for enterprise applications where high availability is

critical.

5 REFERENCE-BASED DISTRIBUTED
STORAGE

In this section, we show the storage service for Xorbits based on

Xoscar. As illustrated in Figure 5a, we decouple the intermediate

storage service of Xorbits into two parts: the implementation of an

SDS operator and the underlying distributed storage service.

5.1 Implementing SDS Operators
SDS comprises numerous APIs and operators, ranging from array

to DataFrame. To facilitate the integration of various data science

5



class DataFrameGroupBy
  def execute(context):
    input_data = context[input_key]

    # operator implementation here

    # get output_data given input_data

    ... 

    context[output_key] = output_data

High-level Operator Interface

Worker 1

data

key

FileObject
...

...
obj

Worker 2

FileObject

...
obj ...

Low-level Distributed Storage Service

Storage API

DataInfo
（key, ip, ...)

...

(a) Xorbits storage service: decoupling actual
data from reference.

StorageAPI

1.put(obj)

StorageManager
ActorStorageHandler

Actor

Storage
Backend

GPU
FileObject

DataManager
Actor

3.write

2.batch.put

4.return DataInfo
(key, ip, ...)

5.log DataInfo

0.setup

reference value

(b) Put data into the storage service.

StorageAPI

1.get(key)

StorageHandler
Actor

Storage
Backend

GPU
FileObject

DataManager
Actor

5.read

4.batch.get

6.return data

2.find DataInfo

3.return DataInfo

7.return data 

5.local.get

True False

5.transfer

key
is_local

Storage
Backend

reference value

(c) Get data from the storage service.

Figure 5: Xorbits storage: from operator implementation to distributed data access.

APIs and operators, we provide a context variable to access the

metadata and data within the distributed environment.

Key-Value Context. Within the Xorbits’ task graph, each graph

node is assigned a unique key. Xorbits uses this key to reference

the chunk data. Figure 5a provides a code snippet for the groupby
operator. This code will be executed during runtime to compute the

output of an operator based on its input data. If the predecessor’s

key is denoted as input_key, the output of the predecessor or the
input of the current node can be retrieved by context[input_key].
With this key-value context, during operator development, devel-

opers can easily access the operator’s intermediate data by ref-

erencing a key in a dictionary. This context acts like a proxy of

distributed storage and abstracts away the complexity of underlying

intermediate data management and physical memory operations.

5.2 Reference-Based Distributed Storage
At the lower level, we overwrite the context dictionary, which is

built upon our distributed storage service. The storage service is

based on the Xoscar actor model and stores data across workers,

providing data access service to the SDS operator through the

storage API.

Unified File-Handle based Interface for Storage Manage-
ment. To integrate heterogeneous storage resources, we design a

unified file handle-based interface for storage management. Each

Xorbits worker creates andmanages its own storage resource through

FileObject, a filesystem-like interface that allows Xorbits to ma-

nipulate heterogeneous storage resources as if handling files. With

the unified FileObject interface, we abstract various storage types

as files and support pluggable backends, including shared memory,

GPU, disk, and mmap [6]. Since traditional files are blocking, we

introduce non-blocking I/O (e.g., asynchronous file writing or seri-

alization) in Xoscar and Xorbits to support asynchronous access.

To boost performance, we implement buffering for GPU and shared

memory; for instance, the GPU backend offers filesystem-like in-

terfaces leveraging NVIDIA’s RMM[10] for memory management.

Decoupling of Actual Data from its Reference. Using the file
handle-based storage management, we decouple physical data from

its reference. Data is written to the worker’s local storage backend,

where each data chunk is assigned a unique key for SDS operator

data access and referencing. We use the DataInfo data structure
to manage data reference, and DataInfo is a metadata container

that holds the data key, data size, offset, and the IP address of the

worker where the data object is stored. Figure 5a illustrates the

data-reference decoupling mechanism.

Fine-grained Intermediate Data Management. We provide

fine-grained control over intermediate data management by imple-

menting several services with actor programming. Figure 5b and

Figure 5c demonstrate how to put and get a data object. After a user

configures a specific storage backend, the StorageManagerActor
is responsible for setting up, registering, and managing the back-

end. The StorageAPI sends requests to the StorageHandlerActor,
which then delays and batches similar remote calls before putting

or getting data into the storage backend. DataInfo is managed by

the DataManagerActor, and subsequent I/O operations will use

DataInfo for addressing, locating the worker first, and then get-

ting data from the memory buffer based on the key and the off-

set. The get operation checks with DataInfo whether the data

key is locally available, and if the data object resides on a remote

node, fetches it through RDMA transfer. For garbage collection,

the DataManagerActor keeps track of reference counts for all data

6



objects and monitors their lifecycle within the distributed system.

Once a data object is no longer referenced, the actor automatically

schedules its deletion, thus efficiently reclaiming storage resources.

Only the DataManagerActor is centralized, where workers query
the DataManagerActor for DataInfo metadata to locate remote

data chunks across the cluster.

6 EVALUATION
6.1 Experiment Setup
Benchmarks. We categorize our benchmark tests into four groups:

machine learning (ML) pipelines, data analysis (DA), shuffle-intensive

scalability tests, and actor micro-benchmarks. Table 2 summarizes

the end-to-end workloads, including dataset sizes and computing

resources (e.g., number of workers or GPUs). In these experiments,

we use the pandas DataFrame API, for example, translating 22

TPC-H SQL queries into their DataFrame API equivalents.

Table 2: Workloads to benchmark different systems.
Workload Size Format Workers Type

TPCx-AI [18]

UC10 SF100

34GB CSV 4 ML

NYC Taxi [1] 24GB CSV 4 ML

Flight [5] 7GB CSV 4 ML

TPC-H [17]

SF10

4GB Parquet 1 DA

TPC-H [17]

SF100

36GB Parquet

1

(8 GPUs)

DA

TPC-H [17]

SF1000

358GB Parquet

2

(16 GPUs)

DA

Baselines. We compare Xorbits (0.8.2) and Xoscar (0.4.3) with

Modin [37] (0.32.0) on Ray [33] (2.38.0), PySpark [48] (3.4.1), RAPIDS

plugin for Spark [8] (24.04.1), Dask [39] (2024.8.2). Xorbits, Dask,

and Modin leverage either pandas (2.2.3) or cuDF (24.8.1) as their

underlying execution engine. Notably, all GPU-based PySpark exe-

cutions use NVIDIA’s RAPIDSGPU plugin, which intercepts Spark’s

query execution plan to replace CPU operations with GPU equiv-

alents. We use the default configuration without any tuning or

performance optimization for all of these systems.

Hardware. We conduct experiments in two environments: a

high-performance computing cluster and a personal laptop. These

two environments are highly representative, as most data scientists

start with exploratory data analysis locally and then scale up to

clusters. The hardware specification is listed in Table 3.

Table 3: The hardware specification for experimental evalua-
tion.

Env

Setting

Device CPU Memory GPU # Nodes

Cluster

CPU

Intel

E5-2650 v4

24 Cores

64GB - 1-32

GPU

Intel 8358

64 Cores

512GB

8 NVIDIA

A800 80G SXM

GPUs

1-2

Laptop CPU Apple M2 24GB - 1

6.2 End-to-end Workload Performance
Machine Learning Pipelines. The machine learning pipeline

tests are conducted on CPU workers, and the results are shown in

Figure 6a. The NYC Taxi pipeline only consists of embarrassingly

parallel operations (shuffle-free), where Xorbits outperformed the

fastest Modin by 1.25×. On the Flight and TPCxAI UC10 workloads,

which include merge and groupby operations, Xorbits surpasses

PySpark with speedups of 1.69× and 1.08×, respectively.
Data Analysis on GPU Backend. The GPU experiments are

to test how Xorbits utilizes GPU memory and are conducted on

the NVIDIA A800 GPU nodes. Figure 6b displays the relative time

of different frameworks running on GPUs with TPC-H SF100 and

SF1000. The findings underscore Xorbits’ superior GPU memory

resource efficiency and robust handling of various query workloads.

For the TPC-H SF100 on 8 A800 GPUs, Xorbits demonstrates sub-

stantial speedups over Dask across various queries, achieving a

peak speedup of 10.56 (Q9) and an average speedup of 1.92× (con-

sidering only successful queries). Against PySpark with the RAPIDS

plugin, Xorbits achieves a maximum speedup of 8.65× (Q12) and an
average speedup of 3.37× on successful queries. Moreover, Xorbits

successfully completes all queries, while both Dask and PySpark

encounter failures, highlighting Xorbits’ reliability. TPC-H SF1000

benchmarks are conducted on 2 nodes with a total of 16 A800 GPUs.

Among successful queries, Xorbits achieves an average speedup

of 1.56× and a peak speedup of 2.06× (Q2) over Dask. Compared

to PySpark with the RAPIDS plugin, Xorbits achieves an average

speedup of 5.67× for the two successful queries.

Data Analysis on Disk Backend. To assess Xorbits’ ability to

leverage disk storage, we run TPC-H SF100 with mmap storage

backend on a 24GB memory MacBook laptop. Table 4 presents the

number of successful queries out of the total 22 and the correspond-

ing speedups achieved by Xorbits compared to other systems. The

results reveal that other systems fail primarily due to inefficient

memory-to-disk management. Specifically, pandas is an in-memory-

only engine; Modin on Ray frequently encounters spilling-related

deadlocks caused by its coarse-grained object store [7, 11]; and

Dask and PySpark, despite supporting disk spilling by default, suf-

fer performance bottlenecks on queries involving intensive I/O

and frequent shuffles. Thus, Xorbits’ success and performance ad-

vantages stem directly from its effective reference-based storage

design.

Table 4: Successful TPC-H SF100 Query Executions and Xor-
bits Speedup on a 24GB MacBook.
SDS Engine pandas Dask Modin on Ray PySpark Xorbits

# of Success 5/22 14/22 1/22 17/22 22/22

Speedup 4.32 1.26 6.72 4.32 /

Compare with pandas. To evaluate any potential overhead

introduced by the Xorbits engine running atop pandas, we con-

duct a comparative performance analysis between Xorbits and

native pandas using TPC-H SF10 on the laptop. Xorbits completes

the benchmark in 1394s compared to pandas’ 1773s, achieving a

1.27× speedup. While Xorbits shows some overhead for lightweight

queries Q2 and Q22 (which pandas completes in approximately 10

seconds), Xorbits demonstrates significant acceleration for complex

7



Taxi Flight TPCxAI UC10

102

103

Ti
m

e 
(s

)

Xorbits
Dask
PySpark
Modin

(a) ML pipeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

0
1
2
3
4
5
6
7
8
9

10
11

Re
lat

ive
 T

im
e

SF100 8 GPUs
Xorbits
Dask
PySpark-RAPIDS

1 2 3 5 6 11 14
Query

0
1
2
3
4
5
6

Re
lat

ive
 T

im
e

SF1000 16 GPUs

Xorbits
Dask
PySpark-RAPIDS

(b) TPC-H on GPUs
Figure 6: End-to-end workloads performance.

operations, particularly Q9 which has five merge and one groupby
and achieves a 3.59× speedup.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

101

102

Ti
m

e 
(s

)

SF10 Laptop

Xorbits pandas

Figure 7: Compare Xorbits with underlying pandas to test
potential overhead introduced by Xorbits.

6.3 Scaling Data-Intensive Operations
To evaluate the ability of Xorbits’ SDS engine to achieve high-

performance data shuffling, we test DataFrame groupby and merge,
two data-intensive operators, on both CPUs and GPUs. We synthe-

size these datasets with various cases, with each case featuring dif-

ferent amounts of shuffle data, such as the unique ratio for groupby
and the match ratio for merge. Figure 8 presents the results. In

CPU-based tests, Xorbits slightly underperforms PySpark in three

out of four cases and shows notable advantages over Dask across all

four. Modin completes only one task, constrained by memory man-

agement limitations. Xorbits shows a considerable advantage over

both PySpark and Dask in GPU-based tests. Specifically, Xorbits

achieves a maximum speedup of 1.57 and an average speedup of

1.30 compared to Dask. The relative speedup compared to PySpark

is even greater, with a peak of 7.64 and an average of 5.34 (based

on successful cases only).

6.4 Performance Impact Breakdown
To isolate and quantify the specific benefits of our two key inno-

vations, we design three micro-benchmarks. The scheduling task

evaluates the time needed to schedule an actor before execution.

Estimating 𝜋 demonstrates the efficiency of concurrent actor exe-

cution, and key-level storage experiment simulates a key-level data

access scenario, where part of the data resides on local actors and

the rest on remote actors. Figure 9 presents the results. Compared to

"Estimate 𝜋 ," which represents a complete workload, the "Schedul-

ing Overhead" benchmark isolates the scheduling time from actual

task execution. By comparing the time saved in scheduling with the

total execution time improvement, we estimate that our scheduling

groupby1
groupby2merge1merge20

200

400

Av
er

ag
e 

Ti
m

e 
(s

) CPU

groupby3
groupby4merge3 merge40

50

Av
er

ag
e 

Ti
m

e 
(s

) GPU
Xorbits Dask Modin PySpark

Figure 8: Experiment on two shuffle-intensive DataFrame
operators: groupby and merge on CPU (Left) and GPU (Right).

method contributes 40–50% to overall performance. The "Key-level

Storage" benchmark shows approximately a 35% improvement.

12 4 8 16 32
# of Nodes

0

2

Av
er

ag
e 

Ti
m

e 
(s

) Scheduling Overhead

12 4 8 16 32
# of Nodes

10

20
Av

er
ag

e 
Ti

m
e 

(s
) Estimate Pi

1 2 3 4
Data Size (GB)

200

400

Av
er

ag
e 

Ti
m

e 
(s

) Key-level Stroage
Ray Xoscar Dask

Figure 9: Micro-benchmarks: scheduling actors (Left), ap-
proximating 𝜋 (Middle), and key-level data storage (Right).

6.5 Strength & Weakness
Xorbits outperforms Dask andModin due to its more efficient sched-

uling and data management. While Spark SQL offers strong perfor-

mance (Figure 2 and left graph of Figure 8), using Python UDFs and

the overhead of Python-to-JVM translation in PySpark introduce ex-

tra overhead, leading to lower performance for the PySpark pandas

API than Xorbits (Figure 6a). Additionally, Spark is memory-based

and performs well when sufficient memory is available, but it may

hang when memory is insufficient (Table 4).

6.6 Summary of Findings & Insights
Our work on Xorbits has revealed several insights about rethink-

ing and building SDS systems from scratch. First, general-purpose

distributed engines like Dask and Ray are limited to specific SDS op-

erations such as groupby, which generate numerous small tasks and

demand fine-grained, key-level data management. These systems

suffer from centralized scheduling or coarse-grained object man-

agement, limiting performance and scalability. Our decentralized

actor-based scheduling and reference-based storage are tailored for

SDS, offering efficient execution and horizontal scalability. Second,

8



we observe a gap between API compatibility and efficient execu-

tion: while PySpark offers strong performance, it does not integrate

seamlessly with the native Python ecosystem; other solutions main-

tain compatibility but compromise on speed or scalability. We argue

that SDS systems should adapt internally for efficient execution

while preserving API compatibility rather than forcing users to

other paradigms. Our approach bridges this gap, enabling scalable

execution of unmodified pandas-like code. Third, achieving SDS on

distributed heterogeneous computing hardware remains challeng-

ing. Our file-handle abstraction provides a unified interface that

efficiently manages heterogeneous memory types, including GPU,

main memory, and disk, and delivers competitive performance and

scalability.

7 CONCLUSION
Xorbits efficiently scales data science workloads by leveraging het-

erogeneous memory resources through two key innovations: a

decentralized actor model Xoscar that eliminates the need for a cen-

tralized scheduler, and a distributed storage system that abstracts

memory resources as files, manipulating handles rather than data

objects. Experiments demonstrate that this architecture delivers

performance advantages over competing scalable data science toolk-

its.

ACKNOWLEDGMENT
This work is supported by the grants of the National Key R&D Pro-

gram of China under Grant 2022ZD0160805, NSFC (No.62132017

and No.U2436209), the Shandong Provincial Natural Science Foun-

dation (No.ZQ2022JQ32), the Beijing Natural Science Foundation

(L247027), the Fundamental Research Funds for the Central Uni-

versities, and the Research Funds of Renmin University of China

(24XNKJ22). Yunhai Wang is the corresponding author of this paper.

REFERENCES
[1] 2014. 2014 Yellow Taxi Trip Data. https://catalog.data.gov/dataset/2014-yellow-

taxi-trip-data Accessed: 2024-11-22.

[2] 2022. PySpark vs Scala Spark vs Spark SQL -Which one is performance efficient? Are
UDFs still bad? https://community.databricks.com/t5/data-engineering/pyspark-

udf-is-taking-long-to-process/td-p/7794 Accessed: 2025-03-15.

[3] 2024. Actors. https://distributed.dask.org/en/stable/actors.html Accessed: 2024-

10-22.

[4] 2024. cuDF - GPU DataFrames. https://github.com/rapidsai/cudf Accessed:

2024-10-28.

[5] 2024. Flight Status Prediction. https://www.kaggle.com/datasets/robikscube/

flight-delay-dataset-20182022/data Accessed: 2024-11-22.

[6] 2024. mmap — Memory-mapped file support. https://docs.python.org/3.12/

library/mmap.html Accessed: 2024-10-26.

[7] 2024. modin with ray engine hang. https://github.com/modin-project/modin/

issues/7349 Accessed: 2025-01-20.

[8] 2024. RAPIDS Accelerator For Apache Spark. https://github.com/NVIDIA/spark-

rapids

[9] 2024. Ray v2 Architecture. https://docs.google.com/document/d/

1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI Accessed: 2024-11-22.

[10] 2024. RMM: RAPIDS Memory Manager. https://github.com/rapidsai/rmm Ac-

cessed: 2024-10-28.

[11] 2024. suggestions on handling out of memory matrix operation on large dataset.
https://github.com/modin-project/modin/issues/6677

[12] Gul Agha. 1986. Actors: AModel of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA.

[13] Richard Alpert and James Philbin. 1997. cBSP: Zero-cost synchronization in a

modified BSP model. NEC Research Institute, Princeton, NJ, USA, Tech. Rep (1997),

97–054.

[14] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael

Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.

In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix AZ USA). ACM, 25–36. https://doi.org/10.

1145/3307681.3325400

[15] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:

Expressing Locality and Independence with Logical Regions. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Washington, DC, USA) (SC ’12). IEEE Computer Society Press.

[16] Rob H. Bisseling. 2004. Parallel Scientific Computation: A Structured Approach
Using BSP and MPI. Oxford University Press, Inc.

[17] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed: Hidden

Messages and Lessons Learned from an Influential Benchmark. In Performance
Characterization and Benchmarking. Springer, Cham, 61–76.

[18] Christoph Brücke, Philipp Härtling, Rodrigo D Escobar Palacios, Hamesh Patel,

and Tilmann Rabl. 2023. TPCx-AI - an Industry Standard Benchmark for Artificial

Intelligence and Machine Learning Systems. Proc. VLDB Endow. 16, 12 (Sept.

2023), 3649–3661. https://doi.org/10.14778/3611540.3611554

[19] Yakup Budanaz, Mario Wille, and Michael Bader. 2022. Asynchronous Work-

load Balancing through Persistent Work-Stealing and Offloading for a Dis-

tributed Actor Model Library. In 2022 IEEE/ACM Parallel Applications Work-
shop: Alternatives To MPI+X (PAW-ATM). 39–51. https://doi.org/10.1109/PAW-

ATM56565.2022.00009

[20] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and

Jorgen Thelin. 2011. Orleans: Cloud Computing for Everyone. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (Cascais Portugal). ACM, 1–14.

https://doi.org/10.1145/2038916.2038932

[21] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian Burckhardt,

Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn,

Umar Farooq Minhas, Ryan Newton, Rahee Ghosh Peshawaria, Tal Zaccai, and

Irene Zhang. 2020. A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency

for Distributed Applications. Proceedings of the VLDB Endowment 13, 5 (2020),
588–601. https://doi.org/10.14778/3377369.3377370

[22] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barrierless

Asynchronous Parallel Execution in Pregel-like Graph Processing Systems. Pro-
ceedings of VLDB Endowment 8, 9 (2015), 950–961. https://doi.org/10.14778/

2777598.2777604

[23] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal

Modular ACTOR Formalism for Artificial Intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. Standford, CA, USA, August
20-23, 1973, Nils J. Nilsson (Ed.). William Kaufmann, 235–245.

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng

Chen. 2019. GPipe: Efficient Training of Giant Neural Networks Using Pipeline

Parallelism. In Advances in Neural Information Processing Systems, Vol. 32. Curran
Associates, Inc.

[25] Alekh Jindal, K. Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,

Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas

Müller, WentaoWu, and Hiren Patel. 2021. Magpie: Python at Speed and Scale Us-

ing Cloud Backends. In 11th Conference on Innovative Data Systems Research, CIDR
2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org.

[26] Laxmikant V. Kale and Sanjeev Krishnan. 1993. CHARM++: A Portable Concur-

rent Object Oriented System Based on C++. In Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications
(New York, NY, USA) (Oopsla ’93). Association for Computing Machinery, 91–108.

https://doi.org/10.1145/165854.165874

[27] Lakshay Goel. 2023. PySpark UDF is taking long to process. https:

//community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-

long-to-process/td-p/7794 Accessed: 2025-03-15.

[28] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-

berg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018. RLlib: Abstractions

for Distributed Reinforcement Learning. In Proceedings of the 35th International
Conference on Machine Learning. PMLR, 3053–3062.

[29] Weizheng Lu, Kaisheng He, Xuye Qin, Chengjie Li, Zhong Wang, Tao Yuan, Xia

Liao, Feng Zhang, Yueguo Chen, and Xiaoyong Du. 2024. Xorbits: Automating

Operator Tiling for Distributed Data Science. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). 5211–5223. https://doi.org/10.1109/

ICDE60146.2024.00392

[30] Wes McKinney et al. 2011. Pandas: A Foundational Python Library for Data

Analysis and Statistics. Python for high performance and scientific computing 14,

9 (2011), 1–9.

[31] Harshitha Menon and Laxmikant Kalé. 2013. A Distributed Dynamic Load

Balancer for Iterative Applications. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis (Denver
Colorado). ACM, 1–11. https://doi.org/10.1145/2503210.2503284

[32] Omri Mor, George Bosilca, and Marc Snir. 2023. Improving the Scaling of an

Asynchronous Many-Task Runtime with a Lightweight Communication Engine.

In Proceedings of the 52nd International Conference on Parallel Processing (Salt

Lake City UT USA). ACM, 153–162. https://doi.org/10.1145/3605573.3605642

9

https://catalog.data.gov/dataset/2014-yellow-taxi-trip-data
https://catalog.data.gov/dataset/2014-yellow-taxi-trip-data
https://community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-long-to-process/td-p/7794
https://community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-long-to-process/td-p/7794
https://distributed.dask.org/en/stable/actors.html
https://github.com/rapidsai/cudf
https://www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022/data
https://www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022/data
https://docs.python.org/3.12/library/mmap.html
https://docs.python.org/3.12/library/mmap.html
https://github.com/modin-project/modin/issues/7349
https://github.com/modin-project/modin/issues/7349
https://github.com/NVIDIA/spark-rapids
https://github.com/NVIDIA/spark-rapids
https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI
https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI
https://github.com/rapidsai/rmm
https://github.com/modin-project/modin/issues/6677
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.14778/3611540.3611554
https://doi.org/10.1109/PAW-ATM56565.2022.00009
https://doi.org/10.1109/PAW-ATM56565.2022.00009
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.14778/3377369.3377370
https://doi.org/10.14778/2777598.2777604
https://doi.org/10.14778/2777598.2777604
https://doi.org/10.1145/165854.165874
https://community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-long-to-process/td-p/7794
https://community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-long-to-process/td-p/7794
https://community.databricks.com/t5/data-engineering/pyspark-udf-is-taking-long-to-process/td-p/7794
https://doi.org/10.1109/ICDE60146.2024.00392
https://doi.org/10.1109/ICDE60146.2024.00392
https://doi.org/10.1145/2503210.2503284
https://doi.org/10.1145/3605573.3605642


[33] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. 2018. Ray: ADistributed Framework for EmergingAI Applications.

In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation (OSDI’18). USENIX Association, USA, 561–577.

[34] Angelo Mozzillo, Luca Zecchini, Luca Gagliardelli, Adeel Aslam, Sonia Bergam-

aschi, and Giovanni Simonini. 2024. Evaluation of Dataframe Libraries for Data

Preparation on a Single Machine. arXiv:2312.11122

[35] Niranda Perera, Arup Kumar Sarker, Kaiying Shan, Alex Fetea, Supun Kambu-

rugamuve, Thejaka Amila Kanewala, Chathura Widanage, Mills Staylor, Tianle

Zhong, Vibhatha Abeykoon, Gregor Von Laszewski, and Geoffrey Fox. 2024. Su-

percharging Distributed Computing Environments for High-Performance Data

Engineering. 2 (2024), 1384619. https://doi.org/10.3389/fhpcp.2024.1384619

[36] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi

Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya

Parameswaran. 2020. Towards Scalable Dataframe Systems. Proceedings of
the VLDB Endowment 13, 12 (Aug. 2020), 2033–2046. https://doi.org/10.14778/

3407790.3407807

[37] Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E.

Gonzalez, Anthony D. Joseph, and Aditya G. Parameswaran. 2021. Flexible

Rule-Based Decomposition and Metadata Independence in Modin: A Parallel

Dataframe System. Proceedings of the VLDB Endowment 15, 3 (Nov. 2021), 739–751.
https://doi.org/10.14778/3494124.3494152

[38] Ioan Raicu. 2009. Many-Task Computing: Bridging the Gap between High-
Throughput Computing and High-Performance Computing. The University of

Chicago.

[39] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked Algorithms

and Task Scheduling. In Python in Science Conference. Austin, Texas, 126–132.
https://doi.org/10.25080/Majora-7b98e3ed-013

[40] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B.

Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L.

Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald

Becker, Duncan Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George

Bosilca, and Aurelien Bouteiller. 2015. UCX: An Open Source Framework for

HPC Network Apis and Beyond. In 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects. 40–43. https://doi.org/10.1109/HOTI.2015.13

[41] Phanwadee Sinthong and Michael J. Carey. 2021. PolyFrame: A Retargetable

Query-Based Approach to Scaling Dataframes. Proceedings of the VLDB Endow-
ment 14, 11 (July 2021), 2296–2304. https://doi.org/10.14778/3476249.3476281

[42] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. 33, 8 (1990),

103–111. https://doi.org/10.1145/79173.79181

[43] David W Walker and Jack J Dongarra. 1996. MPI: A Standard Message Passing

Interface. Supercomputer 12 (1996), 56–68.
[44] Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Michael Lang,

and Ioan Raicu. 2016. Load-Balanced and Locality-Aware Scheduling for Data-

Intensive Workloads at Extreme Scales. 28, 1 (2016), 70–94.

[45] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,

and Ion Stoica. 2013. Shark: SQL and Rich Analytics at Scale. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (Sigmod
’13). Association for Computing Machinery, New York, NY, USA, 13–24. https:

//doi.org/10.1145/2463676.2465288

[46] Maryann Xue, Steven Chen, Andy Lam, Yuanjian Li, Yingyi Bu, Herman Van Hov-

ell, Yunxiao Ma, Xiao Li, Sameer Paranjpye, Abhishek Somani, Bart Samwel, Vuk

Ercegovac, Sriram Krishnamurthy, Reynold Xin, Wenchen Fan, Mostafa Mokhtar,

Jiexing Li, Amit Shukla, Matei Zaharia, Ziqi Liu, Rk Korlapati, Alexander Behm,

and Michalis Petropoulos. 2024. Adaptive and Robust Query Execution for

Lakehouses at Scale. Proceedings of the VLDB Endowment 17, 12 (Aug. 2024),

3947–3959. https://doi.org/10.14778/3685800.3685818

[47] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data

Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. ACM, Portland OR

USA, 1539–1554. https://doi.org/10.1145/3318464.3389738

[48] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J

Franklin, et al. 2016. Apache Spark: A Unified Engine for Big Data Processing.

Commun. ACM 59, 11 (2016), 56–65.

[49] Xing Zhao, Manos Papagelis, Aijun An, Bao Xin Chen, Junfeng Liu, and Yonggang

Hu. 2019. Elastic Bulk Synchronous Parallel Model for Distributed Deep Learning.

In 2019 IEEE International Conference on Data Mining (ICDM) (Los Alamitos, CA,

USA). IEEE Computer Society, 1504–1509. https://doi.org/10.1109/ICDM.2019.

00198

10

https://arxiv.org/abs/2312.11122
https://doi.org/10.3389/fhpcp.2024.1384619
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3494124.3494152
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.14778/3476249.3476281
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.14778/3685800.3685818
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1109/ICDM.2019.00198
https://doi.org/10.1109/ICDM.2019.00198

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background & Related Works
	2.2 Empirical Study & Observation

	3 System Overview
	3.1 Design Principle
	3.2 System Design

	4 Lightweight Actor Scheduling
	4.1 Xoscar Usage & Implementation
	4.2 Data-Intensive I/O
	4.3 Locality-Aware Task Scheduling
	4.4 Comparison with Actor Systems

	5 Reference-based Distributed Storage
	5.1 Implementing SDS Operators
	5.2 Reference-Based Distributed Storage

	6 Evaluation
	6.1 Experiment Setup
	6.2 End-to-end Workload Performance
	6.3 Scaling Data-Intensive Operations
	6.4 Performance Impact Breakdown
	6.5 Strength & Weakness
	6.6 Summary of Findings & Insights

	7 Conclusion
	References

