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Fig. 1: Reproduction of the three bespoke pictorial charts using our library, piccl.js. (a) A line chart illustrating the trend of the US dollar’s
purchasing power, integrated with an image of a US dollar bill (https://tinyurl.com/43w6c22b); (b) A bar chart visualizing the US
budget allocation for various intelligence services, where each bar is represented with a chip image (https://tinyurl.com/589z4jec);
and (c) A nested chart depicting the relationship between five emotions and each day of the week (https://tinyurl.com/23eu89tk).

Abstract—We present PiCCL (Pictorial Chart Composition Language), a new language that enables users to easily create pictorial
charts using a set of simple operators. To support systematic construction while addressing the main challenge of expressive pictorial
chart authoring–manual composition and fine-tuning of visual properties–PiCCL introduces a parametric representation that integrates
data-driven chart generation with graphical composition. It also employs a lazy data-binding mechanism that automatically synthesizes
charts. PiCCL is grounded in a comprehensive analysis of real-world pictorial chart examples. We describe PiCCL’s design and its
implementation as piccl.js, a JavaScript-based library. To evaluate PiCCL, we showcase a gallery that demonstrates its expressiveness
and report findings from a user study assessing the usability of piccl.js. We conclude with a discussion of PiCCL’s limitations and
potential, as well as future research directions.

Index Terms—pictorial charts, data-driven composition, chart composition, parametric representation

1 INTRODUCTION

Pictorial charts, which use symbols or icons to represent data, enhance
engagement [31], memorability [4], and impact [1] by transforming
abstract numbers into relatable imagery. They serve as a compelling
and engaging medium for communicating complex information and
have become a popular choice for narrative visualizations such as
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infographics, data comics, and data videos, aimed at general audiences.
However, constructing effective pictorial charts remains challenging,
even for experienced information designers [15]. The main challenge
in creating pictorial charts lies in their manual composition. Unlike
standard charts, they rely on bespoke glyphs and bind data to custom
components beyond traditional visual channels, making their creation
cumbersome. Without a high-level abstraction, pictorial charts are
typically constructed using two main approaches: (1) iterative authoring
with flexible graphics software such as Adobe Illustrator, the most
commonly used tool and (2) programming with low-level languages like
D3. However, both are time-consuming, labor-intensive, and require
significant expertise, posing a major barrier to broader adoption.

Several tools, such as Data-Driven Guides (DDG) [18], extend vec-
tor graphics with data binding capabilities, but authoring expressive
pictorial charts with them remains labor-intensive. InfoNice [40] al-
lows users to replace standard marks with pictorial objects, and Info-
mages [9] supports embedding charts into thematic images. However,
both rely on rigid workflows that limit creativity. ChartSpark [44]
leverages text-to-image models to generate pictorial charts from data
and textual prompts. While promising, it supports only a narrow set
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of chart types and often produces suboptimal results due to source
inconsistencies and model limitations.

Libraries like Highcharts [16] offer predefined templates for pic-
torial charts, but they are restricted to specific types such as Isotype
or stacked bar charts. Vega [34] and Vega-Lite [33] allow image em-
bedding but face similar constraints. These limitations stem largely
from the Grammar of Graphics [42], which models chart construction
as data transformation. However, pictorial chart authoring often re-
quires fine-grained graphical operations (e.g., combining, resizing, and
aligning custom elements) that are difficult to express in purely data-
driven models. Manipulable Semantic Components (MSC) [19] takes
a graphics-centric approach, treating graphical objects as first-class
citizens and supporting data-driven manipulation. However, it lacks the
high-level abstractions needed to capture the structure and semantics of
complex pictorial charts.

In this work, we aim to enable the data-driven composition of custom
graphical objects, addressing a key gap in the seamless and efficient cre-
ation of diverse, bespoke pictorial charts. Based on an in-depth analysis
of a broad collection of examples, we systematically explore the design
space of pictorial charts and introduce PiCCL (Pictorial Chart Compo-
sition Language), a novel language that extends MSC. PiCCL supports
four core classes of operations: (1) parameterizing pictorial objects
through visual channels such as position, color, height, and quantity,
extending MSC’s encodings; (2) combining charts and pictorial ele-
ments at the glyph or chart level using image composition operators
tailored to pictorial design; (3) generating data-driven variations of
graphical objects to reflect underlying patterns, as supported in MSC;
and (4) linking graphical objects to encode relationships, enhancing
MSC with more explicit and structured visual connections. Further-
more, PiCCL supports nested pictorial charts, enabling the construction
of rich, expressive, and semantically layered visualizations.

Our approach models each chart as a tree, called POT (Pictorial
Object Tree), which serves as a parametric chart template that can be
instantiated with different datasets. In a POT, leaf nodes represent
a graphical object, including standard chart primitives (e.g., points,
bars, and lines) as well as pictures. Internal node corresponds to an
operator that defines how these objects are organized, categorized
as either composition operators or generative operators. The former
combines multiple graphical objects into complex structures, while
the latter produces variations by generating groups of similar marks
based on data attributes. To ensure structural consistency and effective
arrangement of the graphical objects, these operations incorporate both
constraints, such as alignment, connection, equality, and rotation, and
layout mechanisms as parameters.

We implement PiCCL through a JavaScript-based prototype, piccl.js
(https://piccl.github.io/), which provides intuitive APIs that
allow users to construct pictorial charts using a set of expressive op-
erators. At the core of our implementation is an instantiated process
featuring a lazy data-binding mechanism, which automatically syn-
thesizes charts that can render natively across platforms. To evaluate
PiCCL, we conduct a twofold assessment: (1) we demonstrate PiCCL
’s descriptive and expressive power, providing a gallery of pictorial
charts created with piccl.js and (2) we report on a user study conducted
to assess the usability of piccl.js.

In summary, the main contributions of this paper are as follows:
1. An empirical analysis of a large collection of pictorial chart ex-

amples we collected.

2. The design of PiCCL, a language that leverages glyph compo-
sition to represent pictorial charts; PiCCL takes advantage of
the flexibility of graphical composition and data-driven nature
of graphical marks from the grammar of graphics to support the
construction of expressive pictorial charts.

3. An implementation of PiCCL as a JavaScript library, piccl.js,
for authoring pictorial charts. We demonstrate PiCCL’s expres-
siveness power in describing and generating a wide variety of
pictorial charts. In addition, a chart reproduction study with 10
participants showed that users can use piccl.js to create bespoke
pictorial charts.

2 RELATED WORK

Pictorial Charts. The use of pictorial charts for data presentation has a
long history. In the mid-1920s, Otto Neurath, Marie Neurath, and Gerd
Arntz developed the ISOTYPE system [38], which used the repetition
of unit pictographs to represent quantities in social and economic data.
Their work laid the foundation for pictorial visualization techniques,
which continue to be explored and refined today.

In recent decades, extensive research has examined the effectiveness
of pictorial charts on information communication. For example, Borkin
et al. [4] found that visualizations incorporating pictorial elements are
more memorable than standard statistical charts, particularly when the
images are semantically relevant to the data. Similarly, Bateman et
al. [3] demonstrated that pictorial charts significantly enhance long-
term recall, while maintaining comparable interpretation accuracy to
standard charts. Beyond memorability, Haroz et al. [14] found that
pictorial bar charts can enhance engagement and interpretation accuracy,
but their benefits are most pronounced when representing small values.
In contrast, Burns et al. [7] observed that pictographs depicting part-
to-whole relationships have little effect on understandability but help
users envision the topic and associate it with real-world entities.

These studies highlight the potential of expanding pictorial visual-
ization design to enhance interpretability, emotional connection, and
user experience. However, they have primarily focused on visual en-
coding and stylistic variations. Our work advances research on pictorial
chart design and authoring by introducing a four class of composition
operators that enable more structured, modular, and reusable pictorial
chart designs, along with a library that facilitates their creation.
Interactive Chart Creation. To enable expressive chart design without
programming, researchers have developed several interactive authoring
tools. Early efforts focused on providing simple interactions for binding
data to graphical mark primitives (e.g., Lyra [32] with drop zones and
connectors and iVisDesigner [27] with drop-down menus and configu-
ration panels). For more expressive mark creation, Data-Driven Guides
(DDG) [18] enables users to draw custom marks in a vector graphics
editor, using guides based on length, area, and position to encode data.
InfoNice [40] also supports expressive mark design with icons, images,
and text, but it is limited to ISOTYPE-style visualizations. To enable
more sophisticated layouts, Data Illustrator [20] employs a lazy data
binding approach with repeat and partition operators. Charticulator [28]
further advances bespoke chart authoring with a constraint-based layout
system, enabling the creation of reusable chart layouts. Unlike these
tools, StructGraphics [37] takes a data-agnostic approach, allowing
designers to freely draw marks and define layout constraints without
requiring a specific dataset. Inspired by these tools, our work introduces
a unified representation for diverse pictorial charts that is data-agnostic
and supports a rich set of operators and layout constraints to compose
highly expressive visualizations.

Given the benefits of pictorial charts, researchers have explored effi-
cient methods for generating high-quality pictorial visualizations. Since
pictorial objects are central to these charts, several efforts have focused
on streamlining their design process. For example, DataQuilt [45] uti-
lizes computer vision techniques to extract and transform real images
into pictorial objects, simplifying their creation and integration. To
automate the creation process, Qian et al. [25] proposed Retrieve-Then-
Adapt, a method that generates proportion-related pictorial charts by
first retrieving relevant examples from a library and generating an initial
draft, followed by adjusting spatial relationships between visual ele-
ments to refine the composition. Chartreuse [11] extends this approach
by extracting chart structures from examples and adapting them to new
datasets, facilitating the reuse of pictorial designs while maintaining vi-
sual consistency and expressiveness. Infomages [9] retrieves an image
containing the target visual subject and modifies it using filling, overlay-
ing, replicating, and cutouting techniques to embed data. Vistylist [36]
further enhances the pictorial chart design by allowing users to extract
and apply styles (e.g., color, font, and icon) from existing examples to
new datasets, offering greater flexibility. However, these techniques
remain limited to specific data (such as proportional data) and visualiza-
tion types (bar and pie charts) and often require manual adjustments to
ensure accurate style transfer. By leveraging text-to-image generative
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Fig. 2: Examples of pictorial charts from our dataset, showcasing various composition methods used for data encoding.

models to create pictorial charts, ChartSpark [44] provides more flexi-
bility in interpreting text instructions and more expressiveness in visual
representation. Yet, the lack of controllability in generative models
makes it difficult to ensure faithful data binding and maintain a consis-
tent style across independently generated visual elements. In contrast,
our representation PiCCL offers transparency and flexibility, enabling
users to customize and reuse marks for expressive chart creation.
Visualization Libraries and Languages. The grammar of graph-
ics [41, 42] laid the foundation for visualization languages and toolkits,
providing a structured approach to defining visualizations based on
data, marks, and encoding rules. For example, Protovis [5] introduces
an extensible toolkit for constructing visualizations using scene graphs,
allowing users to define visualizations as a hierarchy of marks with prop-
erties derived from data. D3 [6] improves expressiveness and web com-
patibility by replacing Protovis’ scene graph abstractions with direct
manipulation and inspection of the Document Object Model (DOM).
To support efficient creation of interactive visualizations, Vega [34]
and Vega-Lite [33] introduce a high-level declarative grammar that
allows users to specify visualizations using a concise JSON syntax.
These systems automatically generate essential components such as
axes, legends, and scales. However, because they conceptualize visu-
alization construction primarily as a data transformation process, they
offer limited support for creating bespoke charts that require direct
manipulation of graphical objects.

Recently, Liu et al. [19] proposed Manipulable Semantic Compo-
nents (MSC), a framework implemented as the Mascot.js JavaScript
library. MSC adopts a graphics-centric approach, representing visu-
alization scene structures through a unified object model based on
semantic components, including visual elements, encodings, algorith-
mic layouts, constraints, and view configurations, along with a set of
operations for generating and modifying these structures. Similar to
MSC, our PiCCL also follows a graphics-centric paradigm, enabling
the manipulation of graphical elements through a range of operators.
However, there are two key differences. First, PiCCL introduces a set
of image composition operators specifically designed for combining
pictorial objects. Second, it enhances the flexibility of certain oper-
ators in Mascot.js, such as supporting the linkage of heterogeneous
graphical objects. Whereas Mascot.js operates directly on the scene
graph, the elements within the scene graph are often fragmented and
redundant, which hinders extensibility. To overcome this limitation,
we introduce the Pictorial Object Tree (POT), an additional layer of
abstraction above the scene graph. Rather than encoding a specific
chart instance, the POT serves as an abstract representation of the chart
composition process. It structures visualization scenes as hierarchically
composed, parameterized visual marks while remaining agnostic to the
underlying data.
Composition Tree. A composition tree is a concise and expressive
representation widely used in modern CAD systems, exemplified by
the Constructive Solid Geometry (CSG) tree. It encodes geometries as
hierarchical structures, where boolean operators are recursively applied
to primitive shapes [30]. Due to its compactness and flexibility, the CSG
tree framework has been extensively adopted in scientific visualization
research, offering an effective method for structuring and manipulating
complex spatial data. For example, Chen and Tucker [8] extended the

CSG tree to volumetric data, introducing a set of operations on spatial
objects to facilitate the exploration of both interior and exterior regions.
Woodring and Shen [43] proposed a volume shader tree, allowing
users to combine multiple data sources, enhancing the comparison
of multivariate, time-varying volume data, and supporting dynamic
exploration of complex datasets. Beyond volumetric visualization,
Kalkofen et al. [17] employed a CSG-like structure to integrate spatial
and contextual information, enabling the seamless fusion of focus and
peripheral data in augmented reality environments.

Our work extends composition trees as a unifying framework for
structuring graphical objects, visual encodings, and data-binding opera-
tions. With the introduction of pictorial objects, our PiCCL provides a
parametric representation that enhances the flexibility and expressive-
ness of pictorial charts in visualization.

3 EMPIRICAL ANALYSIS FOR PICTORIAL CHART COMPOSITION

To analyze the composition of pictorial charts and systematically de-
velop the operations to create them, we collected examples from diverse
sources, including the Pictorial Visualization Dataset [39], the Info-
mages collection [9], and the Anthropographics list [2]. In addition, we
retrieved pictorial chart images from design repositories (e.g., Pinterest)
and open resources through web searches using keywords—infographic
and pictorial chart. To ensure comprehensive coverage, we further ex-
panded our dataset using image search engines to discover additional
relevant visualizations. Next, we filtered the collected data based on the
criteria established by Coelho and Mueller [9], but without excluding
pictorial charts that use icons to convey data information. As a result,
we finalized a dataset of 1776 valid pictorial charts.

We reviewed the composition operators used in interactive tools for
designing pictorial charts and evaluated their effectiveness in abstractly
capturing the construction of our collected examples. We first took
MSC’s operator set as a foundation and extended it with operators from
tools such as Charticulator [28], Infomage [9], and Chartreuse [11].
Next, two coders independently review and categorize each graphic
according to the composition patterns. To evaluate the objectivity and
consistency of the labeling process, we calculated inter-coder reliability
using Krippendorff’s alpha, where a score of 0.8 or higher is generally
considered acceptable in most research contexts [12].

Based on the results, we identified three major issues. First, we iden-
tified functional redundancies, for instance, MSC’s densify operator
can be replicated by combining replicate (from MSC) with link (from
Charticulator). As a result, we merged and refined the operator set,
eventually organizing it into four core categories that form the basis
of our language. Second, the overlay and cutout compositions in
Infomages are overly restrictive for pictorial charts. They operate only
at the chart level, while many pictorial charts apply these operations
at the mark or glyph level for finer control (e.g., Figure 2b). Addi-
tionally, cutout is limited to simple intersections and cannot express
more general operations, such as subtracting a chart from a background
(e.g., Figure 2c). These constraints limit the expressiveness of pictorial
chart composition. Last, In Chartreuse [11], six operations—morph,
move, fix, recolor, repeat, and partition—primarily function at the mark
level of the proportional charts and lack support for nested composition,
limiting their ability to construct complex pictorial charts.



To address these issues, we developed a language with four classes
of operations. We refined existing patterns, unifyied overlay and cutout
into a flexible combination operator that supports both chart- and glyph-
level composition, and introduced a linking operator to capture semantic
and structural relationships. To the best of our knowledge, no existing
visualization libraries or languages fully support all of these operations.
Our language offers a unified approach that combines data binding with
graphical composition, enabling a compact yet expressive library that
captures a wide range of pictorial chart constructions in a consistent
and reusable manner.

4 PICCL: A LANGUAGE OF PICTORIAL CHART COMPOSITION

Based on our study, we developed PiCCL, a new language for repre-
senting pictorial charts through compositional structure. As illustrated
in Figure 3, a chart in PiCCL is constructed by binding data to visual
objects, which are in turn built using geometry-aware composition
operators. These visual objects are defined through three core concepts:
a mark, a glyph, and a collection. A mark refers to a basic visual
element, such as Picture, Rect, Line, Circle, Point, Text, Axis, or Leg-
end. A glyph is a composite object formed by combining marks, other
glyphs, or collections. A collection represents a group of homogeneous
elements, each bound to a different data item.

Starting from basic marks, visual objects are constructed iteratively
using four classes of operators: mark encoding, which binds data
fields to marks; mark combination, which composes multiple visual
objects; mark generation, which creates data-driven collections; and
object linking, which connects objects into linked structures. These
operators define a chart as a POT (Pictorial Object Tree), capturing its
hierarchical and compositional structure.

chart ← bind(object∗,data)
object ← mark | glyph | encodedObject | collection | linkObject
mark ← Picture | Rect | Circle | Line | Point | Text | Axis | Legend
glyph ← combine(object,object, constraint∗)

encodedObject ← mapValue(object, channel,field,params)
| repeat(object,n, layout∗)

collection ← replicate(object,field, layout∗)
| divide(mark,field, layout∗)

linkObject ← link(object,params)
combine ← Over | In | Out | Xor | Atop

constraint ← PointSnap | LineSnap | OrientMatch | LengthMatch
layout ← StackLayout | GridLayout | CirclePackingLayout | . . .

Fig. 3: The syntax of PiCCL. Main building blocks of the chart, objects,
are built of glyphs, encoded objects, collections, and links through four
classes of composition operators. We use item∗ to represent list.

4.1 Mark Encoding Operators
Each pictorial object is treated as a visual element, with geometric
properties such as position, length, and color parameterized as visual
channels to encode data fields. Specifically, we categorize mark encod-
ing operations into two types: value mapping and repeat. The value
mapping operator adjusts properties like position, size (length or area),
and color or texture of pictorial marks to represent different data values.
This is consistent with the visual encoding operator defined in MSC,
but we introduce part-aware resizing and structure-area recoloring to
support length- and color-based visual encodings tailored specifically
for pictorial objects. Unlike value mapping, the repeat operator dupli-
cates pictorial marks to establish a one-to-many mapping from a single
data value to multiple marks. This is commonly used in unit-based
pictograms and proportional visualizations (e.g., Figure 2a), and is
unique to our language.

The repeat operator is defined as a tuple:

repeat :=< ob ject,n, layout >,

where ob ject is the visual object to repeat, n is the data value specifying
the number of repetitions, and layout defines the strategy for arranging
the repeated elements. This operator generates a set of identical marks,
which are treated as a collection in subsequent operations.

Fig. 4: Part-aware resizing of pictorial objects. (a) Resizing the entire
chart distorts the top part highlighted by a dashed rectangle; (b) Resizing
only the bottom section preserves the shapes of the other regions.

The value mapping operator uses a pictorial mark to encode data
with various mark channels, including position, color, and size. It can
be defined by a visual object ob ject, a visual channel channel, a data
attribute f ield, and optional parameters params:

mapValue :=< ob ject,channel, f ield, params >,

where the scale is optionally included by params; if the user does not
specify it, the system will automatically generate one. The content of
params depends on the type of visual channel. In the following, we
detail two commonly used channels: height and color.
Part-aware Resizing. Resizing a pictorial object composed of multiple
distinct parts can lead to visual distortion. For example, the human icon
shown in Figure 4 consists of two components: the upper body and the
lower body, where each with a unique shape. Directly resizing the entire
object may cause undesired deformations, such as the head becoming
elliptical and the tie becoming over-stretched (Figure 4a). Inspired
by dataQuilt [45], we introduce part-aware resizing, a technique that
allows users to define a rectangular resizable region R within an image
to maintain visual consistency of key features during stretching. Users
can manually specify this region to indicate the area that should deform
smoothly, while the surrounding areas remain unchanged. This method
preserves the visual integrity of pictorial marks while enabling flexible
and controlled resizing. As illustrated in Figure 4b, resizing only the
lower body ensures that the shapes of the top piston and bottom joint
remain intact. The region R is specified via the parameter params,
and defaults to the full extent of m if not explicitly set by the user.
Similar effects can sometimes be achieved by repeating a short or
narrow pictorial object. However, this approach relies on the object
being divisible into repeatable segments, which is not possible for
objects with unequal widths, such as the bottom part in Figure 4.
Structure-aware Recoloring. When recoloring a mark, the parameters
params specify the color scale used for encoding. For categorical
data, each distinct value is mapped to a unique color from a predefined
palette. For numerical data, colors are assigned by interpolating along
a continuous colormap based on their magnitude.

Consider a pictorial object, such as the cup in Figure 1c, which uses
color to encode emotion type. To apply the labeling color ct to the
object, we compute the final color C f by compositing ct with each pixel
color Cs in the source object:

C f = (Ht ,St ,Lt +(1−Lt) ·Ls), (1)

where, (Ht ,St ,Lt) is the HSL representation of the target labeling color
ct , and Ls is the source pixel’s lightness. This formulation retains the
object’s structural shading while applying the desired hue and saturation.

4.2 Object Combination Operators
A glyph is constructed by combining standard chart elements, visual
marks, or pictorial objects with additional pictorial components using a
combine operation, which is unique to PiCCL. A pictorial chart can be
seen as the final form of such a composed glyph. This compositional
strategy enriches the semantic meaning of visualizations, enabling



Fig. 5: (a) Different operations combine two marks, A and B, with corre-
sponding colors cA and cB, to yield a resulting color for each region. (b)
This example illustrates each operation using marks A and B, as shown
in the top left.

expressive and visually engaging pictorial charts while preserving data
accuracy. This operation can be applied both at the glyph level, where
individual glyphs are modified, and at the chart level, where the entire
chart is transformed. As a result, PiCCL supports flexible and nested
composition at multiple levels of the chart.
Composition Operations. Composition operators are used to combine
multiple objects into a single glyph. We consider object composition
from two aspects: i) region calculation determines which areas of
overlapping objects should be discarded and which should be retained;
and ii) color blending defines how the colors of overlapping regions
should be set. Following the composition patterns summarized by
Porter and Duff [24], we provide nine types of operations for combining
two marks A and B, where AB denotes the intersection region. As
shown in Figure 5a, the over operation merges multiple marks into a
single entity, including all regions covered by any of the shapes; the
in operation retains only the overlapping region between two shapes;
the out operation subtracts the overlapping area between two shapes,
keeping only the part that belongs exclusively to one of them; the
atop operation places one shape on top of another, but only retains the
portion of the top shape that overlaps with the bottom shape; and the
xor operation retains the regions that belong exclusively to one shape
or the other, but discards any overlapping areas.
Blending Modes. For the intersection region AB, the final color
is determined through color blending. By default, the blended color
inherits the color of the overlaid pictorial object. Since Porter-Duff
operators are limited to blending methods based solely on alpha values,
we provide alternative blending modes commonly used in image editing
software [10] such as darken, multiply, and color burn. These modes
offer greater flexibility in visual representation and allow for enhanced
customization of the chart’s appearance.
Equality Constraints. When performing composition operations, mul-
tiple marks are combined into a single glyph. A crucial aspect of this
process is maintaining the correct relative positioning and size relation-
ships between two source and target objects, src and tgt. To achieve this,
we introduce four types of equality constraints as illustrated in Figure 6.

• Point Snapping: Each object selects a reference point re f in its local
coordinate system, and then the two reference points are aligned in
the global coordinate system with an optional offset. This method,
shown in Figure 6a, ensures precise positioning of elements relative
to each other:

tgt.re f = src.re f +∆, (2)

where src.re f and tgt.re f represent the coordinates of two anchor
points in the global coordinate systems, while ∆ specifies the align-
ment offset.

• Line Snapping: Each object selects a reference line re f L, and the two
lines are constrained to be parallel in the global coordinate system

Fig. 6: Illustration of four types of constraints.

Fig. 7: An example of a pictorial chart (a), defined through a hierarchy of
nested compositions (b).

with an optional separation distance. This constraint is defined as the
one in Equation 2 but for lines (Figure 6b).

• Orientation Matching: To maintain a consistent angular relationship,
reference lines selected from both objects are constrained to a fixed
orientation difference. This ensures rotational alignment, where
the lines remain parallel if the difference is zero; otherwise, they
maintain a predefined angular displacement.

• Length Matching: This constraint, shown in Figure 6d, ensures that
a specific length parameter of two elements remains equal.

With these constraints, the composition operations listed in Fig-
ure 5a can reliably preserve the intended spatial relationships, even
when varying data parameters produce different geometries. Figure 7b
shows an example where such constraints are applied. During the in
operation between the train and the rectangle, two constraints are used:
a length matching constraint ensures the train’s height matches that
of the rectangle to avoid incomplete cropping, and a point snapping
constraint aligns their bottom right corners to preserve the train’s front.

By default, the visual properties of a target object are not data-driven
(e.g., fixed bar widths in bar charts). However, these properties may be
influenced by multiple constraints and layouts, potentially causing con-
flicts. Similarly, for data-dependent properties, conflicts can arise be-
tween data encoding and other operations. To resolve them, we define a
priority hierarchy among the three types of operators: encoding has the
highest priority, followed by constraint-based composition operators,
and then layout operators. For each property, only the highest-priority
operator is applied to change this property, ensuring a consistent and
predictable visual representation. If conflicts arise from multiple con-
straints, only the constraint defined by the earliest-specified operation
is applied, providing a clear resolution mechanism.

Note that both point snapping and line snapping are supported by
Charticulator [28], StructGraphics [37], and MSC [19], while length
matching is unique to PiCCL. Orientation matching is only partially
supported in StructGraphics, which allows rotating an element to a



Fig. 8: Illustration of single-level combination for authoring a wine-themed pictorial bar chart (a) and a food-themed pictorial pie chart (c) using a
sequence of operators, with corresponding piccl.js code snippets shown in (b) and (d). Replacing the pictorial object images in (a) and (c) results in
the new theme-related bar chart (e) and pie chart (f).

fixed angle but does not support matching an angular displacement.
Nonetheless, both length matching and orientation matching are es-
sential for achieving structural alignment in pictorial charts, see the
examples in Figure 7b and Figure 8c.

4.3 Object Generation Operators

Generative Operators create multiple similar marks or glyphs that vary
in parameters to represent different data values. The two primary oper-
ators are replicate and divide, which correspond to those introduced in
in Data Illustrator [20] and MSC [19]. We strive to minimize the num-
ber of supported operations, ensuring a simplified learning process for
users. As a result, additional generative operators introduced by MSC
are not included, as some of them can be effectively replicated using
our operations. For example, the densify operation can be achieved by
using repeat to generate a point collection and then inserting a visual
link mark between consecutive points to connect them. This approach
allows for the construction of lines or area charts without requiring
additional operators.

Operations. The replicate operation creates a collection of multiple
pictorial objects, each mapped to a separate data item and encoded
through visual channels such as size, color, or orientation. Unlike the
repeat operation described in subsection 4.1, which produces identical
duplicates, replicate binds each instance to data. For example, while
each row in Figure 2a is generated using repeat, the overall set of rows
is created through replicate. The resulting collection is taken as an
object for further application of other operations. Figure 7b shows an
example, where the collection of glyphs is combined with the title.

The divide operation segments a single pictorial object into parts,
each representing a data subset (see Figure 2d). This is particularly
effective for visualizing proportions within a single unit, transforming
an image into a multi-part data container. For the marks generated by
divide, users can apply any operation to each generated mark or the
whole collection; see the example in Figure 8a.

Layouts. The layout method is introduced as a parameter within gener-
ative operators to automatically determine the positions of generated
marks. Similar to MSC [19], we provide two types of layout algorithms:
constraint-based layouts and algorithmic layouts. The former positions
elements automatically by applying a set of predefined constraints, with
common types including stack, grid, circle, and align layouts. If con-
flicts arise such as applying both align and stack layouts along the same
X-axis, the system prioritizes the first constraint in the sequence to
ensure consistency. In contrast, algorithmic layouts employ specialized
algorithms such as circle packing [23] and force-directed layouts [21]
to determine mark placement, providing greater flexibility for complex
spatial arrangements that constraint-based methods struggle to handle.

4.4 Object Linking Operator
Beyond encoding data values through mark channels and mark quantity,
we introduce a new type of operator, link, for representing networks
(see Figure 1c), hierarchies, and cause-and-effect relationships. It
establishes connections between pictorial marks/glyphs or between
pictorial and standard marks/glyphs, defined as:

link := ⟨m, (esrc, edst)⟩,

where m is a pictorial object used to render the link, and (esrc,edst)
denotes the source and target marks to be connected. This operation
returns a link object that can be visualized as a straight line, a curve,
or a band, depending on the nature of the relationship and the desired
emphasis in the visualization. Its visual properties (e.g., color, thickness,
and width) can be further utilized to encode relevant data attributes.

Since the source and target marks can be defined explicitly or implic-
itly, our representation supports both sequential links and data-driven
links, similar to Charticulator [28], while extending to various types of
visual marks for greater expressiveness. In contrast, MSC does not sup-
port this operation directly; instead, it treats links as additional marks
and uses repeat operators to construct connections between elements.
This approach restricts linking to objects within the same collection,
failing to support cases like the one shown in Figure 1c.

4.5 Pictorial Object Tree
Based on these operators, we represent each chart as a parameterized
tree structure, termed the Pictorial Object Tree (POT). In this tree, each
leaf node corresponds to one or more graphical objects, referred to
as semantic components [19]. The edges denote operators that define
the relationships and transformations applied to the components, while
the internal nodes represent intermediate results produced by applying
these operations.

For example, Figure 7b depicts the POT of the corresponding picto-
rial chart, Figure 7a. Serving as a data-independent abstraction, the POT
allows users to construct the visualization structure before binding data
for instantiation. Once data is specified, a scene graph is generated to
encode the spatial relationships among graphical objects. Furthermore,
Figure 7b represents a hierarchy of nested operations to create Figure 7a,
further demonstrating PiCCL’s flexibility and expressiveness.

5 PICCL.JS: A LIBRARY FOR PICTORIAL CHART CREATION

While our language PiCCL is inspired by Mascot.js [19], we chose
not to extend it directly for pictorial chart authoring. This is primarily
because Mascot.js lacks an abstraction layer like our Pictorial Object
Tree (POT), instead embedding the object model directly into the scene
graph. While this design is effective for reverse engineering or editing



existing charts, it poses significant limitations for creating new ones. In
particular, the tight coupling between the scene graph and specific data
makes chart reuse and composition difficult.

To address these challenges, we developed a JavaScript prototype
library called piccl.js, built around POT as an independent abstraction
layer. During the construction phase, POT remains decoupled from
data, resulting in a compact and low-redundancy representation. Only
during the instantiation phase is the POT tree bound to the dataset, at
which point the full scene graph is generated in a single pass. This
approach eliminates the need for repeated modifications to the scene
graph and significantly improves system flexibility and maintainability.
All graphical objects, including pictures, are defined as JavaScript
objects, with operations implemented as global functions. Encoding
methods are specified as member functions in their corresponding
graphical objects, while constraint methods are applied to the objects
returned by composition functions, and layout methods are executed by
repeat and data-driven generation functions. When multiple methods
are invoked by an object, they are sequentially chained.

Scale Inference. Most existing tools like Charticulator [28] rely on
a fixed viewport size and determine the scale in a top-down manner,
where the constraints and scale are solved simultaneously. However, the
generated scale depends solely on the data and the viewport, without
accounting for the aspect ratio of the pictorial objects, often leading to
visual distortion. To address this issue, we propose a bottom-up scale
inference mechanism that aims to minimize distortion by inferring a
suitable scale range based on the dimensions of the pictorial objects. In
this process, the actual size and position at each level are determined
by the transformed results of lower-level components under the current
scale. Additionally, the viewport size dynamically adjusts based on the
number of data items, preserving both visual faithfulness and flexibility
across different data distributions. For example, in size encoding, we
determine the mark size by mapping one aggregate data value propor-
tionally to the original glyph size, with options such as the maximum
or average value. When using position to represent categorical data,
elements are arranged at equal distances while maintaining their origi-
nal size, rather than allocating space for each category based on a fixed
viewport size.

Instantiation Process. Our library instantiates chart specifications
through a three-stage pipeline: Generate – Solve – Render.

In the Generate phase, the system transforms the PiCCL to generate
a scene graph based on the provided data. This process involves two
key steps. First, it executes generative operators in a top-down manner
to dynamically create scene graph elements and assign data to child
nodes. Then, it maps data values to visual properties using encoding
operators, where data values are translated into the visual attributes of
scene graph elements. This phase bridges the gap between the abstract
tree structure and concrete visual instances, preparing the scene for
constraint solving, layout computation, and final rendering.

In the Solve phase, the library determines the exact attribute values
of elements within the scene graph. Layout rules are automatically
converted into constraints; for instance, a stack layout is translated
into a series of line-snapping constraints, ensuring that the end of each
element aligns with the start of the next. Once all constraints are estab-
lished, the system solves them to compute the spatial parameters of each
element. For algorithmic layouts such as circle packing, which cannot
be fully expressed through constraints, dedicated layout algorithms are
applied separately to compute the final spatial arrangement.

In the Render phase, the library compiles the scene graph into the
target output format to generate the final image. It currently supports
PNG and SVG outputs. For SVG, basic graphical elements are mapped
to corresponding SVG geometric primitives, while various operators
are translated into SVG groups (<g>), masks (<mask>), and filters
(<filter>). This approach enriches SVG with semantic components,
similar to MSC [19], enabling visualization deconstruction and reuse.

Custom Composition. The <g> tag provides basic stacking functional-
ity, which corresponds to the over operator in PiCCL, but it cannot rep-
resent more advanced compositions. Although SVG’s <feComposite>
filter supports Porter-Duff operations, it does not allow for custom

blend modes. To enable flexible, operator-specific composition, we use
additional SVG features such as <mask> and <feBlend>.

For each element, we identify overlapping and non-overlapping
regions. The overlapping area is masked using the alpha channel of
the other element, while the non-overlapping part is extracted using
<feColorMatrix>. Depending on the operator, we retain or discard
specific regions. For example, in keeps only the overlap, while out
discards it entirely. If the operator retains the overlap, we apply the
blend mode using <feBlend>. Otherwise, simple grouping with <g>
is used.

6 EVALUATION

In this section, we present two forms of evaluation. After describing
PiCCL’s descriptive and expressive power, we report a user study
conducted to assess the usability of piccl.js.

6.1 Evaluation of PiCCL
Descriptive Power. To evaluate its descriptive power, we conducted
a comprehensive analysis of 1,776 collected pictorial charts, mapping
them to four classes of operators: mark parameterization, object combi-
nation, object generation, and object linking. While all charts utilize
mark channels for data encoding, our labeling specifically focuses
on parameterization applied to pictorial marks, excluding standard
marks. The detailed mappings of all charts are provided on the website
(https://piccl.github.io/dataset). The results reveals that all
pictorial charts involve generative operators to generate data-driven
mark variations, 85% use parameterization, 48% involve combina-
tion, and 4% require linking. Although this distribution analysis does
not directly quantify expressive power, it illustrates the diversity and
frequency of operators needed for real-world pictorial chart designs,
thereby reflecting the expressive breadth of piccl.js.
Expressive Power. To demonstrate the expressive power of PiCCL,
we produced a variety of bespoke pictorial charts. Figure 1 shows
three examples from our gallery, and more examples are available at
https://piccl.github.io/gallery. PiCCL constructs pictorial
charts using mark encoding, object combination, object generation
operators, and optional object linking operators. These elements are
organized as a POT, enabling the creation of diverse pictorial charts
through the combination, reuse, and substitution of its components. The
combination operators can be applied to marks, glyphs, or collections,
and can operate at both single and nested levels. Below, we demon-
strate how new pictorial charts can be created by applying different
combinations of these components.
Single-level Combination. The input elements for the combination
operators can be any type of visual mark, such as pictorial marks,
rectangles, labels, glyphs, or collections. Figure 8a shows a pictorial
chart created with piccl.js, as illustrated in Figure 8b. A wine bottle
image is combined with a rectangle using the atop operator (lines 6-8),
and then further composed with labels and lines via the union operator
to form a glyph (lines 13-14). This glyph is replicated in a data-driven
manner to generate a series of bars.

In another example to produce the food-related pie chart (Figure 8c)
with piccl.js specifications (Figure 8d) a circle is first divided into a
collection of sectors via divide operation (line 3). Each sector is then
combined with a pie image using the in operator (line 5), with the
constraints ensuring that their centers are aligned (line 6) and image’s
width and height match the circle’s diameter (line 7). Then, the resulting
glyph is then further enhanced with a label using the union operator
at the mark level (line 11-14). Finally, these composite glyphs are
assembled into a chart through another union operation (line 16).

Given an example pictorial chart, the corresponding POT can be
reused to create new charts by simply substituting theme-related images
and data, enabling rapid generation of thematically consistent visual-
izations. Figure 8e and Figure 8f show two examples generated by
replacing the original pictorial objects with alternative ones.
Nested Combination. Each pictorial chart is treated as a graphical
object, enabling it to be further combined with other objects through
compositional operations. As shown in Figure 9, this process builds
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Fig. 9: Illustration of nested combination for creating new pictorial charts.
(a) An ISOTYPE bar chart is constructed using a sequence of operations.
(b) The resulting chart is then combined with an emotion glyph, and the
composite glyph is replicated to represent different emotions. (c) A code
snippet demonstrating how to combine a pictorial chart with other objects
using piccl.js.

upon the chart in Figure 1c, with Figure 9c presenting the core piccl.js
specification. In Figure 9a, an ISOTYPE bar chart is first constructed
by applying a sequence of operations including repeat, union, and
replicate to duplicate and arrange icons that encode data values
(lines 1-4). Once completed, the entire bar chart is treated as a single
composite object. This object is then combined with an emotion glyph
using the union operator (lines 7-11), forming a new expressive visual
unit. By replicating this combined glyph, the system generates multiple
instances, as shown in Figure 9b, each representing a different emotion
and enabling visual comparison across five emotional categories. Fol-
lowing the same approach, the resulting chart can be further enhanced
by linking it with a set of text labels, producing the final visualization
shown in Figure 1c.

The created chart object can also be reused to replace glyphs in an
existing chart, enabling further combinations. For example, in Fig-
ure 10a, a pictorial chart is constructed using a sequence of operations
(mapValue, union, link, replicate) to combine four components:
a flower shape encoding GDP (area and color), a root encoding 2017
DESI (x-position), a center encoding 2022 DESI (x) and digital econ-
omy value (y), and a text label for the country name. Suppose the
user now wishes to explore GDP distribution across sub-sectors of the
tertiary sector (e.g., transportation, finance, education). After browsing
previously created examples, she discovers a chart (shown in Fig-
ure 10b) that uses a radial layout with petals of varying lengths to
represent sector-specific values. Finding this design compelling, the
user decides to incorporate the flower glyph structure into her existing
chart. By replacing the original flower specification with the one used
in Figure 10b, she quickly generates a new pictorial chart that provides
a detailed breakdown of GDP across sectors, as shown in Figure 10c.

6.2 User Study: Usability of piccl.js

To assess the usability of piccl.js, we conducted a user study with
10 participants (6 males, 4 females) from a local university. Fol-
lowing a commonly used methodology for evaluating chart authoring
tools [20, 26, 28, 29, 45], participants were asked to reproduce bespoke
charts. All had prior experience with JavaScript and were familiar with
visualization libraries like D3.js and Vega-Lite.

Procedure. The study began with a training session introducing PiCCL
and piccl.js. Participants were guided through three hands-on exercises
covering key concepts and API usage, including mark definition, en-

Fig. 10: Creating a new pictorial chart by reusing components from other
examples. (a) A pictorial chart where flower size, center’s x, y position,
and root’s x position are used to encode four different variables. (b)
A flower chart with petal lengths representing multiple variables. (c) A
new chart created by replacing the flower glyph in (a) with the petal-
based glyph from (b), allowing each flower to encode GDP values across
various sectors.

coding, composition operators, as well as the use of constraints and
layouts. Each exercise was accompanied by a solution. Participants
were encouraged to ask questions during the training phase, which
lasted approximately 1.5 hours.

Participants were then asked to complete four tasks, and encouraged
to think aloud about their reasoning and the challenges they faced. For
each task, we observed their workflows, collecting verbal feedback, and
recorded task completion time. Tasks involved transforming a basic
chart (bar chart or pie chart) into a pictorial chart, and were designed
with increasing complexity; Task 1 (Figure 11a) involved simple chart-
level combine operations and Task 4 (Figure 11d) required the use of
nested repeat and union operators. Participants were provided with
the initial chart code, data, and image assets, and used a pre-configured
workspace. A POT diagram for each task was offered as a hint if
participants could not make progress in five minutes.

Results. Seven out of 10 participants successfully completed all four
tasks with minimal API-related guidance, while the other three com-
pleted all tasks independently (https://osf.io/5eqb7). As summa-
rized in Figure 11, the average completion time across all tasks and
participants was under 10 minutes, ranging from 4.7 to 12.9 minutes
per individual. Participants were not instructed to prioritize speed. Par-
ticipants evaluated piccl.js on five standard usability dimensions using
a 7-point Likert scale (1 = “Strongly Disagree,” 7 = “Strongly Agree”):
learnability (6.1), efficiency (6.4), memorability (5.8), error recovery
(4.9), and satisfaction (6.4).

Participants consistently appreciated piccl.js ’ expressiveness and
flexibility, noting that it enabled tasks that would be difficult or nearly
impossible with other tools. Many were especially impressed with the
Boolean composition operators, particularly intersect. One partic-
ipant remarked, “With D3, achieving this would’ve required a ton of
complex code—now, a single operator does it.” Two-thirds of the par-
ticipants highlighted the value of the constraint system, which helped
them control layout and alignment, reducing manual adjustments. Sev-
eral participants commented that the overall design model of piccl.js
aligned closely with their way of thinking. One participant said, “I

https://osf.io/5eqb7


Fig. 11: (a-d) Top: the target pictorial charts used in the user study as
tasks (these charts were created using piccl.js); bottom: the task comple-
tion times in seconds, with error bars indicating standard deviations. (a)
Task 1 – Clock-style pie chart composition; (b) Task 2 – intersect each
icon with a blue bar; (c) Task 3 – multi-level mark and chart composition
with layout adjustment; (d) Task 4 – nested repeat and glyph composition
for decorated bar charts. (e,f) Two approaches to constructing a bar
overlaid with multiple star icons.

can assemble the shapes I want in the way I imagine, without having
to think about how each element’s attributes are calculated.” Another
added, “I can imagine a tree-like structure of my chart, which makes the
logic behind the construction much clearer.” Participants also found
the code easy to understand, making modification straightforward.

An interesting observation emerged in Task 4, the pictorial bar chart
shown at the top of Figure 11d. In this chart, the height of each bar
represents the number of championships won by a team, and star-
shaped decorations placed above the bar encode the same value. There
are two valid approaches to constructing a single decorated bar. The
first approach (Figure 11e) involves combining a short rectangle and
a star icon using the union operator to form a basic unit, which is
then repeated vertically based on the data value. The second approach
(Figure 11f) first repeats the star icon according to the data value and
then overlays the repeated stars with a rectangle whose height also
encodes the same value. In our original design, the method shown
in Figure 11e was intended as the expected solution. However, most
participants intuitively opted for the method in Figure 11f, even though
it required fine-tuning the spacing between stars to ensure they fit
within the bar’s bounds. We hypothesize that this choice is influenced
by users’ starting points: those constructing the chart from scratch are
more likely to build from compositional units (favoring Figure 11e),
while those editing an existing bar chart focus on augmenting it with
visual elements (favoring Figure 11f). This finding highlights the
flexibility of our compositional framework, allowing multiple valid
construction strategies for the same visual outcome and supporting a
range of user workflows and mental models.

We observed a recurring issue during the use of the intersect
operator: after applying the operation, only the overlapping region
remains, which can make it difficult to identify errors if constraints
are incorrectly configured. To address this, we plan to incorporate a
debug mode in piccl.js. In this mode, the original shapes involved in
intersect or difference operations will be preserved and displayed
semi-transparently, enabling users to better understand and debug spa-
tial relationships among elements.

7 DISCUSSION AND FUTURE WORK

Expressiveness. Although PiCCL is specifically designed for con-
structing pictorial charts, it is also capable of modeling most standard
chart types created using existing visualization libraries and languages
such as D3 and Vega. This versatility stems from its compositional de-
sign and support for essential visualization constructs, including mark
encoding, layout, glyph composition, and data binding. Unlike tradi-
tional systems that follow the grammar of graphics paradigm, PiCCL
introduces a modular, hierarchical, and part-based representation that
enhances reusability, extensibility, and composability in visualization
authoring, as demonstrated in Section 6.1. Compared to MSC [19],
POT provides a more compact structure. Its use of fewer operators and
lazy data binding simplifies programmatic manipulation and facilitates

seamless design extension.
However, PiCCL is not able to represent all examples in our set

of collected pictorial charts. Specifically, it cannot effectively model
charts with overly flexible layouts, highly diverse or irregular elements,
or those that rely on 3D visual effects. In addition, PiCCL currently
lacks built-in support for common data transformation operations such
as aggregation, filtering, and pivoting. As a result, these tasks must
be performed externally prior to visualization. In future work, we
plan to incorporate data transformation capabilities directly into the
POT, enabling a fully integrated authoring workflow—from raw data
to expressive visual forms.
Usability. Our user study demonstrates that PiCCL and its implementa-
tion in piccl.js make it relatively easy to create pictorial charts. However,
most participants had prior experience with D3 or JavaScript. This level
of technical proficiency may not be common among many pictorial
chart designers, especially those without a programming backgrounds.
This limitation highlights the challenge of programmatically defining
and managing visual variability within a code-based framework.

To address these challenges, we plan to develop an interactive author-
ing tool based on PiCCL. To enable the construction of data-driven pic-
torial charts without programming, it will leverage direct manipulation
of graphical elements, including support for freeform sketching [22].
Inspired by systems such as CAST [13] and CAST+ [35], our tool
will incorporate auto-completion techniques to guide users through
the chart construction process, suggesting appropriate operations and
visual encodings as needed while still allowing for creative flexibility.
Interaction. Our piccl.js currently focuses on static bespoke chart.
An important direction for future work is extending the prototype to
support interactive pictorial charts, where pictorial elements can reflect
dynamic states such as hover, selection, or filtering. This would enable
richer user experiences, allowing charts to respond to user input through
visual feedback like highlighting. Integrating interaction also raises
new challenges in maintaining semantic and spatial consistency across
dynamic states, especially for complex composed glyphs. We plan to
explore interaction models that preserve the compositional logic of the
POT representation while enabling flexible interaction design.
Generative AI. Currently, users are required to manually source theme-
relevant pictorial objects, often spending significant time browsing
databases or searching online. To alleviate this burden, we plan to inte-
grate generative models (e.g., controllable text-to-image diffusion [46])
to suggest or generate suitable pictorial assets automatically. This inte-
gration will streamline the creative workflow, reduce the effort needed
for asset collection, and make pictorial chart authoring more accessible,
particularly for users with limited design or programming experience.

8 CONCLUSION

In this paper, we introduced a composition model and PiCCL, a new
language that uses glyph composition to support the creation of expres-
sive and semantically meaningful pictorial charts. We implemented
PiCCL as a JavaScript library, piccl.js, which provides a set of sim-
ple composition operations for authoring diverse pictorial charts. We
demonstrated that piccl.js is expressive enough to reproduce a variety
of examples and is easy to learn and use, as shown through a user study
with 10 participants. Finally, we discussed directions for future work,
including extending PiCCL’s expressiveness and developing interactive
authoring tools.
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